MC74VHCT574A

Octal D-Type Flip-FIop with 3-State Output

The MC74VHCT574A is an advanced high speed CMOS octal flip-flop with 3 -state output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This 8-bit D-type flip-flop is controlled by a clock input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V , because it has full 5.0 V CMOS level output swings.

The VHCT574A input and output (when disabled) structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. These input and output structures help prevent device destruction caused by supply voltage-input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $\mathrm{f}_{\max }=140 \mathrm{MHz}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $I_{C C}=4 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- TTL-Compatible Inputs: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 4.5 V to 5.5 V Operating Range
- Low Noise: V ${ }_{\text {OLP }}=1.6 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- Chip Complexity: 286 FETs or 71.5 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{O E}$	CP	\mathbf{D}	\mathbf{Q}
L	$\tilde{\zeta}$	H	H
L	K	L	L
L	L, H,	X	No Change
H	X	X	Z

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHCT574A

Figure 1. Logic Diagram

OE	$1 \bullet$	20] V_{CC}
D0 0	2	19	Q0
D1	3	18	Q1
D2	4	17	Q2
D3	5	16	Q3
D4 0	6	15	Q4
D5	7	14	Q5
D6	8	13	Q6
D7	9	12	Q7
GND [10	11	CP

Figure 2. Pin Assignment

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to + 7.0	V
$V_{\text {in }}$	DC Input Voltage		-0.5 to + 7.0	V
$V_{\text {out }}$	DC Output Voltage	Outputs in 3-State High or Low State	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } V_{C C}+0.5 \end{gathered}$	V
İK	Input Diode Current		-20	mA
lok	Output Diode Current ($\mathrm{V}_{\text {OUT }}$ < GND; $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$)		± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin		± 25	mA
Icc	DC Supply Current, V_{CC} and GND Pins		± 75	mA
P_{D}	Power Dissipation in Still Air,	SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature		-65 to + 150	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
\dagger Derating - SOIC Packages: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	Outputs in 3-State High or Low State	0 $\mathrm{~V}_{\text {out }}$	DC Output Voltage
		0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	V_{CC}	V	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	-40	+85

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathbf{V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		4.5 to 5.5	2.0			2.0		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8	V
V_{OH}	Minimum High-Level Output Voltage$\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	4.5	4.4	4.5		4.4		V
		$\mathrm{IOH}^{\text {O }}=-8 \mathrm{~mA}$	4.5	3.94			3.80		
V_{OL}	Maximum Low-Level Output Voltage $\quad \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$	4.5		0.0	0.1		0.1	V
		$\mathrm{IOL}=8 \mathrm{~mA}$	4.5			0.36		0.44	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
I_{OZ}	Maximum 3-State Leakage Current	$\begin{aligned} & V_{\text {in }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & V_{\text {out }}=V_{\text {CC }} \text { or } G N D \end{aligned}$	5.5			± 0.25		± 2.5	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40.0	$\mu \mathrm{A}$
$I_{\text {CCT }}$	Quiescent Supply Current	Per Input: $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ Other Input: V_{CC} or GND	5.5			1.35		1.50	mA
IOPD	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			0.5		5.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle)	$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 140 \\ & 130 \end{aligned}$		$\begin{aligned} & 80 \\ & 95 \end{aligned}$		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, CP to Q	$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.1 \\ & 5.6 \end{aligned}$	$\begin{gathered} 9.4 \\ 10.4 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzL, } \\ & t_{\text {tp7e }} \end{aligned}$	Output Enable Time, OE to Q	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \hline 10.2 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLz, } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Output Disable Time, OE to Q	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$C_{L}=50 \mathrm{pF}$		7.0	11.2	1.0	12.0	ns
tosth, toshl	Output to Output Skew	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1.0		1.0	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance				4	10		10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance, Output in High-Impedance State				9				pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0 V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2)	$\mathbf{p F}$	

1. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\mathrm{PLHm}}-\mathrm{t}_{\mathrm{PLHn}}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\mathrm{PHLm}}-\mathrm{t}_{\mathrm{PHLn}}\right|$.
2. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per flip-flop). C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	1.2	1.6	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.2	-1.6	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.8	V

TIMING REQUIREMENTS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \\ \text { Limit } \\ \hline \end{gathered}$	Unit
			Typ	Limit		
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, D to CP	$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$		6.5	8.5	ns
$t_{\text {h }}$	Minimum Hold Time, CP to D	$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$		2.5	2.5	ns
t_{w}	Minimum Pulse Width, CP	$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$		2.5	2.5	ns

ORDERING INFORMATION

Device	Package	Shipping †
MC74VHCT574ADWG	SOIC-20WB (Pb-Free)	38 Units / Rail
MC74VHCT574ADWRG	SOIC-20WB (Pb-Free)	$1000 /$ Tape \& Reel
MC74VHCT574ADTG	TSSOP-20*	75 Units / Rail
MC74VHCT574ADTRG	TSSOP-20*	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

Figure 3. Switching Waveform

Figure 4. Switching Waveform

Figure 5. Switching Waveform

*Includes all probe and jig capacitance
Figure 6. Test Circuit

Figure 8. Expanded Logic Diagram

SCALE 1:1

Q	0.25 (M)	T	A (S)	B (S)

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
DIMENSION AT MAXIMUM MATERIAL
CONDITION.

DIM	MILLIMETERS	
	MIN	
A	2.35	MAX
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
 MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\stackrel{ }{ }$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

[^0]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	6.40	6.60	0.252	0.260		
B	4.30	4.50	0.169	0.177		
C	---	1.20	---	0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65 BSC		0.026 BSC			
H	0.27	0.37	0.011	0.015		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007	0.010		
L	6.40	BSC	0.252 BSC			
M	0°		8°	0°		8°

GENERIC MARKING DIAGRAM*月月

	XXXX
	XXXX
	ALYW•
\bigcirc	A

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " v ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

