

User Guide for FEBFSL4110LR_CS01U06A

Integrated Controller FSL4110LR 6.0 W Auxiliary Power Supply

Featured Fairchild Product: FSL4110LR

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

© 2014 Fairchild Semiconductor Corporation

1.	Intro	duction	3
	1.1. 1.2. 1.3.	General Description Features Internal Block Diagram	3
2.	Spec	ification for Evaluation Board	5
3.	Phot	ographs	6
4.	Print	ed Circuit Board	7
5.	Sche	matic	8
6.	Bill	of Materials	9
7.	Tran	sformer Design	10
8.	Test	Conditions	11
9.	Perfo	ormance of Evaluation Board	12
	 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 9.12. 	Startup Performance Normal Operation Voltage Stress of Drain and Secondary Diode Output Ripple and Noise Load Transient Output Line and Load Regulation Hold-up Time Output Short Test Abnormal Over Current Test Efficiency Operating Temperature Electromagnetic Interference (EMI)	 13 14 15 17 18 19 19 20 21 22
		sion History	

This user guide supports the evaluation kit for the FSL4110LR. It should be used in conjunction with the FSL4110LR datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at <u>www.fairchildsemi.com</u>.

1. Introduction

This document is an engineering report describing measured performance of the FSL4110LR. The input voltage range is 85 V_{RMS} – 460 V_{RMS} , there is one DC output of 300 mA at 20V _{MAX}. This document contains a general description of FSL4110LR, the power supply specification, schematic, bill of materials, and the typical operating characteristics.

1.1. General Description

The FSL4110LR is an integrated Pulse Width Modulation (PWM) controller and 1000 V avalanche rugged SenseFET specifically designed for high input voltage offline Switching Mode Power Supplies (SMPS) with minimal external components. VCC can be supplied through integrated high-voltage power regulator without auxiliary bias winding.

The integrated PWM controller includes a fixed-frequency oscillator, Under-Voltage Lockout (UVLO), Leading-Edge Blanking (LEB), optimized gate driver, soft-start, temperature-compensated precise current sources for loop-compensation, and variable protection circuitry.

Compared with a discrete MOSFET and PWM controller solution, the FSL4110LR reduces total cost, component count, PCB size, and weight; while simultaneously increasing efficiency, productivity, and system reliability. This device provides a basic platform for cost-effective design of a flyback converter.

1.2. Features

- Built-in Avalanche Rugged 1000 V SenseFET
- Precise Fixed Operating Frequency: 50 kHz
- VCC can be supplied from either bias-winding or self-biasing.
- Soft Burst-Mode Operation Minimizing Audible Noise
- Random Frequency Fluctuation for Low EMI
- Pulse-by-Pulse Current Limit
- Various Protection Functions: Overload Protection (OLP), Over-Voltage Protection (OVP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD) with Hysteresis. Under-Voltage Lockout (UVLO) and Line Over-Voltage Protection (LOVP) with Hysteresis.
- Built-in Internal Startup and Soft-Start Circuit
- Fixed 1.6 s Restart Time for Safe Auto-Restart Mode of All Protections

1.3. Internal Block Diagram

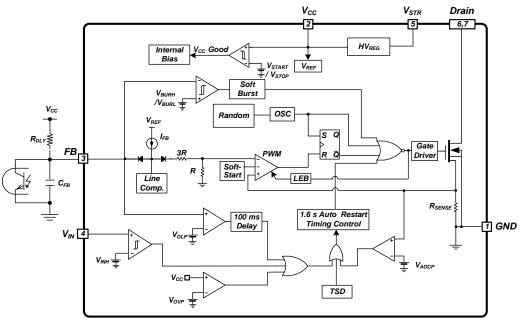


Figure 1. Block Diagram

2. Specification for Evaluation Board

Table 1. Evaluation Board Specifications

Main Co	FSL4110LRN	
Input	Frequency Range	60 Hz
Input	Voltage Range	85 V _{AC} ~ 460 V _{AC}
	Power	< 6 W
Output	Voltage	< 20 V
	Current Typ. 0.3 A	
Board Dimensions	x 40 mm	

All data of the evaluation board were measured under a condition where the board was enclosed in a case and external temperature was around 25° C.

3. Photographs

To measure drain current, change from jumper to wire. But keep the jumper in the other cases.

Figure 2. Top View

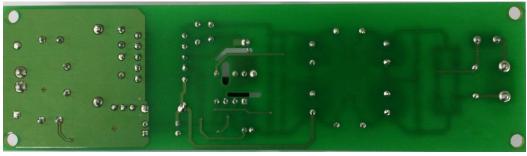


Figure 3. Bottom View

4. Printed Circuit Board

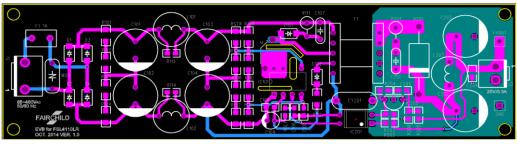


Figure 4. Board Layout

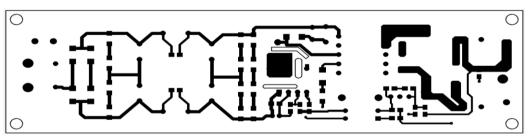


Figure 5. Printed PCB, Top Side

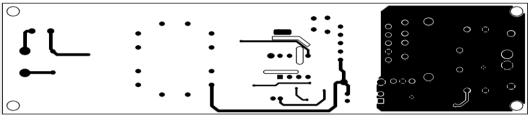
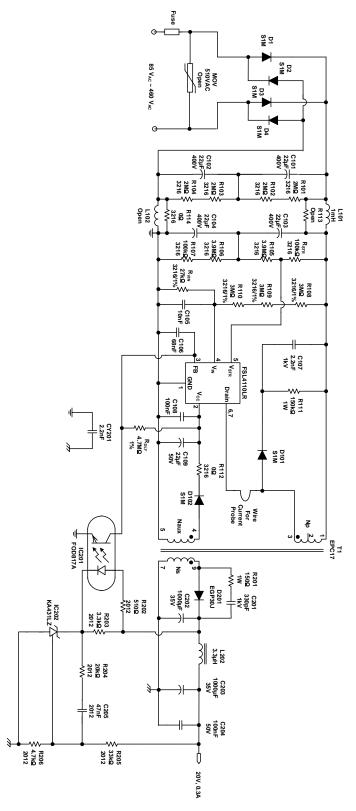



Figure 6. Printed PCB, Bottom Side

5. Schematic

6. Bill of Materials

ltem No.	Part Reference	Part Number	Qty.	Description
1	IC101	FSL4110LRN	1	7-DIP, Fairchild Semiconductor
2	IC201	FOD817A	1	4-DIP, Fairchild Semiconductor
3	IC202	KA431LZ	1	TO-92, Fairchild Semiconductor
4	D1, D2, D3, D4, D101, D102	S1M	6	1000 V / 1 A General Purpose Rectifiers, SMA, Fairchild Semiconductor
5	D202	EGP30J	1	1000 V / 3 A Rectifiers, DO-201AD, Fairchild Semiconductor
6	F1	SS-5-1A	1	1 A Fuse
7	MOV	Open		Open
8	L101	1 mH	1	Filter Inductor, 10Φ
9	L102	Open		Open
10	L202	3.3 µH	1	Filter Inductor, 8Φ
11	T1	Lm = 1.4 mH	1	EPC17 Core
12	R101, R102, R103, R104	2 MΩ	4	SMD Resistor 3216
13	RSTR, R107	100 kΩ	2	SMD Resistor 3216
14	R105, R106	3.9 MΩ	2	SMD Resistor 3216
15	R108, R109, R110	3 MΩ	3	SMD Resistor 3216
16	RVIN	27 kΩ	1	SMD Resistor 3216 / 1%
17	R111	150 kΩ	1	Resistor 1 W
18	R112, R114	0 Ω	2	SMD Resistor 3216
19	R113	Open		Open
20	RDLY	4.7 ΜΩ	1	SMD Resistor 2012 / 1%
21	R201	150 Ω	1	Resistor 1 W
22	R202	510 Ω	1	SMD Resistor 2012
23	R203	3.3 kΩ	1	SMD Resistor 2012
24	R204	20 kΩ	1	SMD Resistor 2012
25	R205	33 kΩ	1	SMD Resistor 2012 / 1%
26	R206	4.7 kΩ	1	SMD Resistor 2012 / 1%
27	C101, C102, C103, C104	22 µF / 400 V	4	Electrolytic Capacitor, 105°C
28	C105	10 nF / 50 V	1	SMD Capacitor 2012
29	C106	68 nF / 50 V	1	SMD Capacitor 2012
30	C107	2.2 nF / 1 kV	1	Ceramic Capacitor
31	C108	100 nF / 50 V	1	SMD Capacitor 2012
32	C109	22 µF / 50 V	1	Electrolytic Capacitor, 105°C
33	C201	330 pF / 1 kV	1	Ceramic Capacitor
34	C202, C203	1000 µF / 35 V	2	Ultra-Low Impedance Electrolytic Capacitor, 105°C
35	C204	100 nF / 50 V	1	SMD Capacitor 2012
36	C205	47 nF / 50 V	1	SMD Capacitor 2012
37	CY201	2.2 nF	1	Y-Capacitor

7. Transformer Design

- Core: EPC17 (PC-40)
- Bobbin: 10 Pins

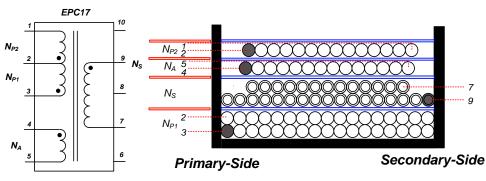


Figure 8. Transformer Specifications & Construction

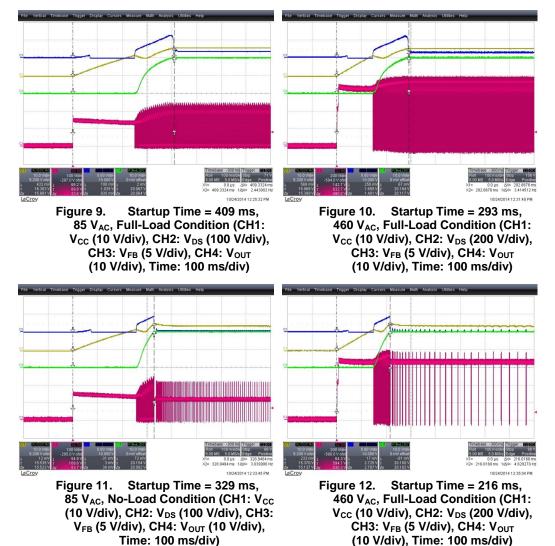
No.	Winding	Pin (S → F)	Wire	Turns	Winding Method		
1	N _{P1}	3 → 2	0.20 Φ * 1	72 Ts	Solenoid Winding		
2	Insulation: Polyester Tape t = 0.05 mm, 3-Layer						
3	Ns	9 → 7	0.20 Φ (TEX) * 1	27 Ts	Solenoid Winding		
4		Insulatio	on: Polyester Tape t =	= 0.05 mm,	3-Layer		
5	NA	4 → 5	0.15 Φ * 1	20 Ts	Solenoid Winding		
6	Insulation: Polyester Tape t = 0.05 mm, 3-Layer						
7	N _{P2}	2 → 1	0.20 Φ * 1	33 Ts	Center Solenoid Winding		
8	Outer Insulation: Polyester Tape t = 0.05 mm, 3-Layer						

Table 3. Electrical Characteristics

	Pin	Specification	Remark
Inductance	1 - 3	1.4 mH ±7%	1 kHz, 1 V
Leakage	1 - 3	Max. 20 μΗ	Short All Output Pins

8. Test Conditions

Table 4. Test Conditions & Test Equipment


Evaluation Board #	FEBFSL4110LR_CS01U06A
Test Date	November 04, 2014
Test Equipment	AC Source: 6800 Series by EXTECH Electronic Load: EML-05B by FUJITSU Oscilloscope: WaveRunner 104Xi-A by LeCroy Power Meter: PZ4000 by YOKOGAWA Multi Meter: 45 by FLUKE
Test Items	 Startup Performance Normal Operation Voltage Stress of Drain and Secondary Diode Output Ripple and Noise Load Transient Output Line & Load Regulation Hold-Up Time Output Short Test Abnormal Over Current Test Efficiency Operating Temperature Electromagnetic Interference (EMI)

9. Performance of Evaluation Board

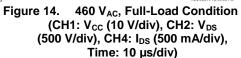
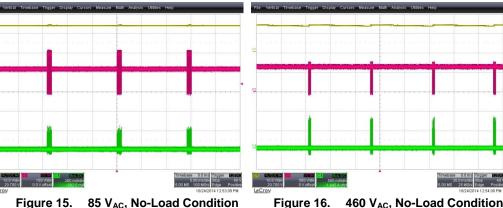
9.1. Startup Performance

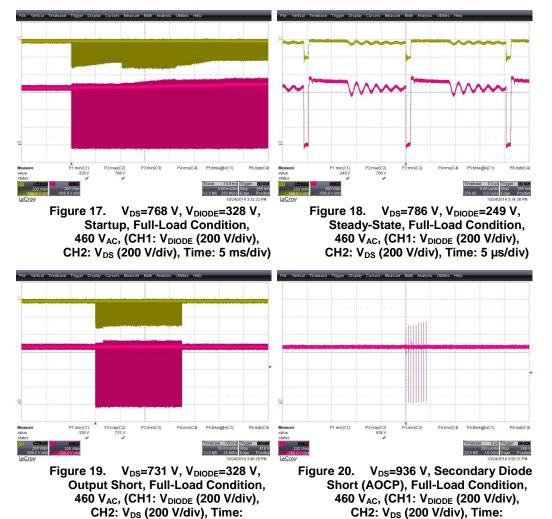
Test Condition: Measure the time interval between AC plug-in and stable output.

© 2014 Fairchild Semiconductor Corporation

9.2. Normal Operation

Test Condition: Measure normal operation.


Figure 13. 85 V_{AC} , Full-Load Condition (CH1: V_{CC} (10 V/div), CH2: V_{DS} (100 V/div), CH4: I_{DS} (200 mA/div), Time: 10 μ s/div)

9.3. Voltage Stress of Drain and Secondary Diode

Test Condition: Measure the voltage stress on the FSL4110LR and secondary diode.

200 µs/div)

Downloaded from Arrow.com.

50 ms/div)

9.4. Output Ripple and Noise

Test Condition: Ripple and noise are measured by using 20 MHz bandwidth limited oscilloscope with a 10 μF / 50 V capacitor paralleled with a high-frequency 0.1 μF capacitor across a output as Figure 21.

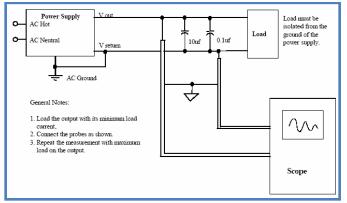
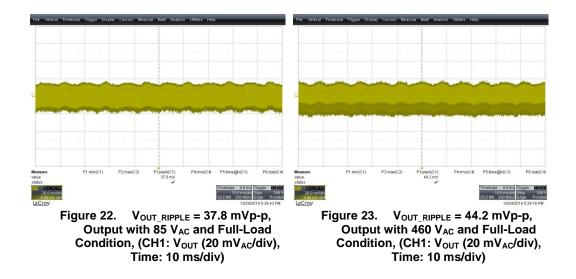
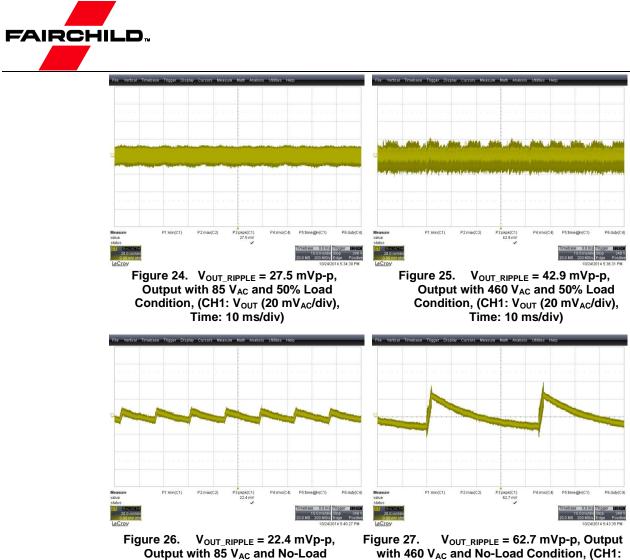




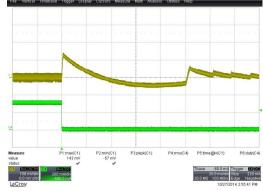
Figure 21. Recommended Test Setup

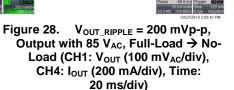
Table 5. Test Result

	No-Load	25% Load	50% Load	75% Load	Full-Load
85 V _{AC}	22.4 mVp-p	20.5 mVp-p	27.5 mVp-p	35.8 mVp-p	37.8 mVp-p
110 V _{AC}	23.7 mVp-p	20.5 mVp-p	28.2 mVp-p	35.2 mVp-p	38.4 mVp-p
230 V _{AC}	42.2 mVp-p	27.5 mVp-p	31.4 mVp-p	36.5 mVp-p	39 mVp-p
265 V _{AC}	43.5 mVp-p	30.1 mVp-p	32.6 mVp-p	37.1 mVp-p	39.7 mVp-p
350 V _{AC}	46.1 mVp-p	35.2 mVp-p	36.5 mVp-p	39 mVp-p	41.6 mVp-p
400 V _{AC}	55.7 mVp-p	39 mVp-p	39.4 mVp-p	41 mVp-p	43.5 mVp-p
460 V _{AC}	62.7 mVp-p	44.8 mVp-p	42.9 mVp-p	42.2 mV-p	44.2 mVp-p

Condition, (CH1: Vout (20 mVAC/div), Time: 10 ms/div)

with 460 V_{AC} and No-Load Condition, (CH1: V_{OUT} (20 mV_{AC}/div), Time: 10 ms/div)




9.5. **Load Transient**

Test Condition: Load Transient is measured by using 20 MHz bandwidth limited oscilloscope with a 10 μ F / 50 V capacitor paralleled with a high-frequency 0.1 μ F capacitor across a output as Figure 21.

		85 V _{AC}	110 V_{AC}	$230 \ V_{\text{AC}}$	$265 \ V_{\text{AC}}$	$350 \; V_{\text{AC}}$	$400 \; V_{\text{AC}}$	$460 \; V_{\text{AC}}$
Full- Load	Overshoot	143 mV	146 mV	143 mV	150 mV	140 mV	147 mV	140 mV
\rightarrow	Undershoot	57 mV	59 mV	59 mV	57 mV	57 mV	56 mV	54 mV
No- Load	Peak-Peak	200 mV	205 mV	202 mV	207 mV	197 mV	203 mV	194 mV
No- Load	Overshoot	79 mV	78 mV	72 mV	72 mV	69 mV	67 mV	75 mV
\rightarrow	Undershoot	271 mV	284 mV	269 mV	283 mV	253 mV	268 mV	250 mV
Full- Load	Peak-Peak	350 mV	362 mV	341 mV	355 mV	322 mV	335 mV	325 mV

Table 6. Test Result

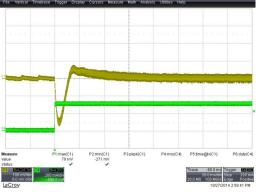
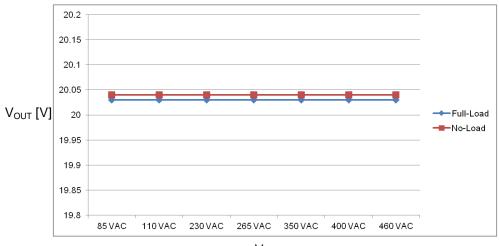


Figure 29. V_{OUT_RIPPLE} = 350 mVp-p, Output with 85 V_{AC} , No-Load \rightarrow Full-Load (CH1: V_{OUT} (100 mV_{AC}/div), CH4: I_{OUT} (200 mA/div), Time: 20 ms/div)

No-Load (CH1: Vout (100 mVAC/div), CH4: I_{OUT} (200 mA/div), Time: 20 ms/div)

Figure 31. VOUT_RIPPLE = 325 mVp-p, Output with 460 V_{AC}, No-Load \rightarrow Full-Load (CH1: V_{OUT} (100 mV_{AC}/div), CH4: I_{OUT} (200 mA/div), Time: 20 ms/div)



9.6. Output Line and Load Regulation

Test Condition: Line and Load regulation are measured output voltage regulations according to changing input voltage and output load.

Table 7. Test Result

	85 V _{AC}	110 V _{AC}	230 V _{AC}	265 V _{AC}	350 V _{AC}	400 V _{AC}	460 V _{AC}
Full-Load	20.03 V	20.03 V	20.03 V	20.03 V	20.03 V	20.03 V	20.03 V
No-Load	20.04 V	20.04 V	20.04 V	20.04 V	20.04 V	20.04 V	20.04 V

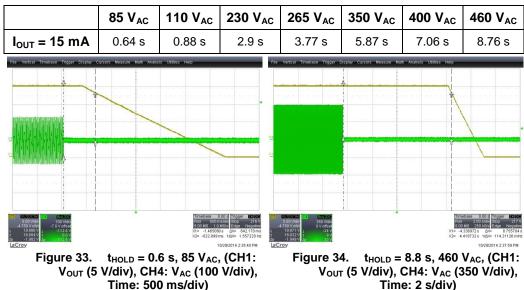

 V_{AC}

Figure 32. Line and Load Regulation

9.7. Hold-up Time

Test Condition: Measure the time interval between AC plug-out and $V_{\rm OUT}$ * 0.9. Load condition is 5% of full-load.

Table 8. Test Result

9.8. Output Short Test

Test Condition: Measure "Hiccup" mode operation. Remove R108 because LOVP can be triggered over 400 V_{AC} .

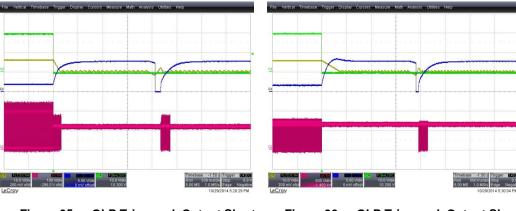


Figure 35. OLP Triggered, Output Short with 85 V_{AC} , Full-Load, (CH1: V_{CC} (10 V/div), CH2: V_{DS} (100 V/div), CH3: V_{FB} (5 V/div), CH4: V_{OUT} (10 V/div), Time: 500 ms/div)

Figure 36. OLP Triggered, Output Short with 460 V_{AC}, Full-Load, (CH1: V_{CC} (10 V/div), CH2: V_{DS} (500 V/div), CH3: V_{FB} (5 V/div), CH4: V_{OUT} (10 V/div), Time: 500 ms/div)

9.9. Abnormal Over Current Test

Test Condition: Short secondary diode and measure "Hiccup" mode operation. Remove R108 because LOVP can be triggered over 400 V_{AC} .

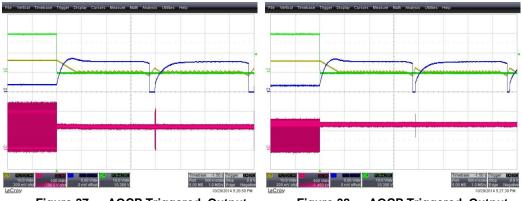
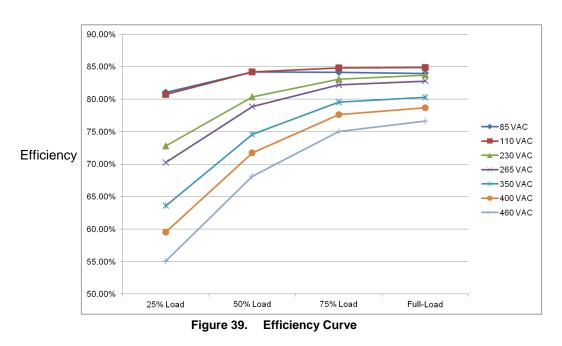


Figure 37. AOCP Triggered, Output Short with 85 V_{AC} , Full-Load, (CH1: V_{CC} (10 V/div), CH2: V_{DS} (100 V/div), CH3: V_{FB} (5 V/div), CH4: V_{OUT} (10 V/div), Time: 500 ms/div)

Figure 38. AOCP Triggered, Output Short with 460 V_{AC}, Full-Load, (CH1: V_{CC} (10 V/div), CH2: V_{DS} (500 V/div), CH3: V_{FB} (5 V/div), CH4: V_{OUT} (10 V/div), Time: 500 ms/div)


9.10. Efficiency

FAIRCHILD

Test Condition: Measure the input and output power after 30 minutes aging.

	25% Load	50% Load	75% Load	Full-Load
85 V _{AC}	81.05%	84.20%	84.13%	83.97%
110 V _{AC}	80.71%	84.18%	84.82%	84.85%
230 V _{AC}	72.76%	80.34%	83.07%	83.71%
265 V _{AC}	70.25%	78.87%	82.20%	82.78%
350 V _{AC}	63.58%	74.59%	79.53%	80.29%
400 V _{AC}	59.52%	71.72%	77.61%	78.69%
460 V _{AC}	55.08%	68.13%	75.01%	76.60%

Table 9. Test Results

9.11. Operating Temperature

Test Condition Measure the saturated temperature.

Table 10. Test Results

	85 V _{AC}	460 V _{AC}	Remark
FSL4110LRN	42.0°C	48.4°C	Box 2
Transformer	47.0°C	51.5°C	Circle 1
Secondary Rectifier with Snubber	41.8°C	49.0°C	Box 3

Temperature Photos

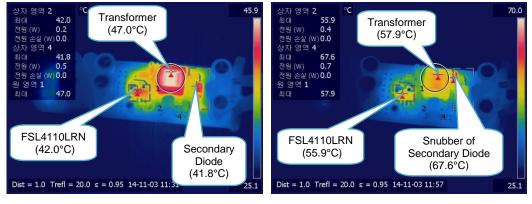
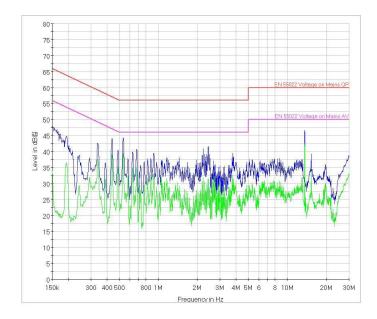


Figure 40. 85 V_{AC}; Top Side

Figure 41. 460 V_{AC}; Top Side



9.12. Electromagnetic Interference (EMI)

Test Conditions:

- Frequency Subrange: 150 kHz 30 MHz,
- Measuring: QuasiPeak; Average
- Load is 65.5 Ω Resistor

Table 11. Test Results

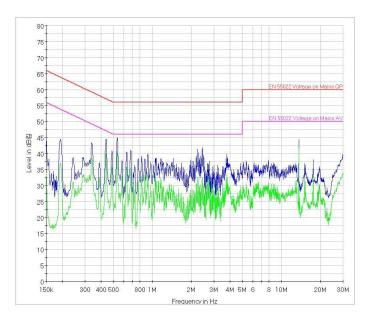
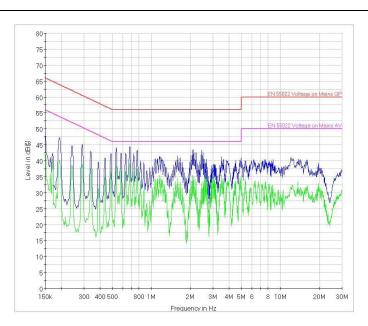



Figure 43. Conduction Neutral: 110 V_{AC}

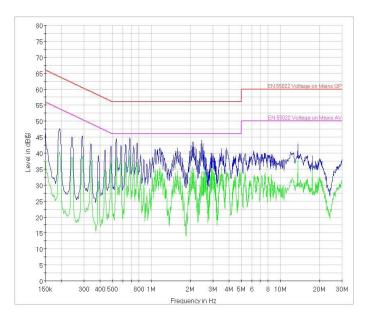


Figure 45. Conduction Neutral: 220 V_{AC}

FAIRCHILD

10. Revision History

Rev.	Date	Description
1.0	Dec.16. 2014	Initial Release

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.