ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
KAI-0340

640 (H) x 480 (V) Interline CCD Image Sensor

Description

The KAI-0340 image sensor is a $640(\mathrm{H}) \times 480(\mathrm{~V})$ resolution, $1 / 3^{\prime \prime}$ optical format, progressive scan interline CCD. This image sensor is offered in 2 versions: the KAI-0340-Dual supports 210 full resolution frame-per-second readout while the KAI-0340-Single supports 110 frame-per-second readout. Frame rates as high as $2,000 \mathrm{~Hz}$ (KAI-0340-Single) and $3,400 \mathrm{~Hz}$ (KAI-0340-Dual) can be achieved by combining the Fast Horizontal Line Dump with custom clocking modes. Designed for demanding imaging applications, the KAI-0340 provides electronic shuttering, peak QE (quantum efficiency) of 55\%, extremely low noise and low dark current. These features give this sensor exceptional sensitivity and make it ideal for machine vision, scientific, surveillance, and other computer input applications.

Table 1. GENERAL SPECIFICATIONS

Parameter	Typical Value
Architecture	Interline CDD; Progressive Scan
Total Number of Pixels	$696(\mathrm{H}) \times 492(\mathrm{~V})$
Number of Effective Pixels	$648(\mathrm{H}) \times 484(\mathrm{~V})$
Number of Active Pixels	$640(\mathrm{H}) \times 480(\mathrm{~V})$
Pixel Size	$7.4 \mu \mathrm{~m}(\mathrm{H}) \times 7.4 \mu \mathrm{~m}(\mathrm{~V})$
Active Image Size	$4.736 \mathrm{~mm}(\mathrm{H}) \times 3.552 \mathrm{~mm}(\mathrm{~V})$, 5.920 mm (Diagonal), 1/3" Optical Format
Aspect Ratio	4:3
Number of Outputs	1 or 2
Charge Capacity	$\begin{aligned} & 40 \mathrm{MHz}-20,000 \mathrm{e}^{-} \\ & 20 \mathrm{MHz}-40,000 \mathrm{e}^{-} \end{aligned}$
Output Sensitivity	$30 \mu \mathrm{~V} / \mathrm{e}^{-}$
Photometric Sensitivity KAI-0340-ABB KAI-0340-CBA (RGB) KAI-0340-FBA (RGB)	3.61 V/lux-sec 0.66 (R), 1.51 (G), 1.14 (B) V/lux-sec 0.92 (R), 1.80 (G), 1.22 (B) V/lux-sec
Readout Noise	$\begin{aligned} & 40 \mathrm{MHz}-16 \mathrm{e}^{-} \\ & 20 \mathrm{MHz}-14 \mathrm{e}^{-} \end{aligned}$
Dynamic Range	$\begin{aligned} & 40 \mathrm{MHz}-62 \mathrm{~dB} \\ & 20 \mathrm{MHz}-69 \mathrm{~dB} \end{aligned}$
Dark Current Photodiode VCCD	$\begin{aligned} & <200 \mathrm{eps} \\ & <1,000 \mathrm{eps} \end{aligned}$
Maximum Pixel Clock Speed	40 MHz
Maximum Frame Rate KAI-0340-Dual KAI-0340-Single	$\begin{aligned} & 210 \mathrm{fps} \\ & 110 \mathrm{fps} \end{aligned}$
Package Type	22-Pin CERDIP (0.050" Pin Spacing)
Cover Glass	Clear/Quartz Glass

NOTE: All Parameters are specified at $\mathrm{T}=40^{\circ} \mathrm{C}$ unless otherwise noted.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

Figure 1. KAI-0340 Interline CCD Image Sensor

Features

- High Sensitivity
- High Dynamic Range
- Low Noise Architecture
- High Frame Rate
- Electronic Shutter

Applications

- Intelligent Transportation Systems
- Machine Vision
- Scientific

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Table 2. ORDERING INFORMATION - KAI-0340 IMAGE SENSOR

Part Number	Description	Marking Code
KAI-0340-AAA-CP-AA-Single	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Standard Grade, Single Output	KAI-0340S
KAI-0340-AAA-CP-AE-Single	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-AAA-CP-AA-Dual	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Standard Grade, Dual Output	KAI-0340D
KAI-0340-AAA-CP-AE-Dual	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Engineering Grade, Dual Output	
KAI-0340-AAA-CF-AA-Single	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Quartz Cover Glass, No Coatings, Standard Grade, Single Output	KAI-0340S
KAI-0340-AAA-CF-AE-Single	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Quartz Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-AAA-CF-AA-Dual	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Quartz Cover Glass, No Coatings, Standard Grade, Dual Output	KAI-0340D
KAI-0340-AAA-CF-AE-Dual	Monochrome, No Microlens, CERDIP Package (Sidebrazed), Quartz Cover Glass, No Coatings, Engineering Grade, Dual Output	
KAI-0340-ABB-CP-AA-Single	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Standard Grade, Single Output	KAI-0340ABBS
KAI-0340-ABB-CP-AE-Single	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-ABB-CP-AA-Dual	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Standard Grade, Dual Output	KAI-0340ABBD
KAI-0340-ABB-CP-AE-Dual	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Taped Clear Cover Glass, No Coatings, Engineering Grade, Dual Output	
KAI-0340-ABB-CB-AA-Single	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Single Output	KAI-0340ABBS
KAI-0340-ABB-CB-A2-Single	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Grade 2, Single Output	
KAI-0340-ABB-CB-AE-Single	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-ABB-CB-AA-Dual	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Dual Output	KAI-0340ABBD
KAI-0340-ABB-CB-AE-Dual	Monochrome, Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Dual Output	
KAI-0340-FBA-CB-AA-Single	Color Gen2 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Single Output	KAI0340FBAS
KAI-0340-FBA-CB-AE-Single	Color Gen2 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-FBA-CB-AA-Dual	Color Gen2 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Dual Output	KAI0340FBAD
KAI-0340-FBA-CB-AE-Dual	Color Gen2 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Dual Output	
KAI-0340-CBA-CB-AA-Single*	Color Gen1 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Single Output	KAI-0340SCM
KAI-0340-CBA-CB-AE-Single*	Color Gen1 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Single Output	
KAI-0340-CBA-CB-AA-Dual*	Color Gen1 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Standard Grade, Dual Output	KAI-0340DCM
KAI-0340-CBA-CB-AE-Dual*	Color Gen1 (Bayer RGB), Telecentric Microlens, CERDIP Package (Sidebrazed), Clear Cover Glass, No Coatings, Engineering Grade, Dual Output	

*Not recommended for new designs.
Table 3. ORDERING INFORMATION - EVALUATION SUPPORT

Part Number	
KAI-0340-10-40-A-EVK	Evaluation Board (Complete Kit)

See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

DEVICE DESCRIPTION

Architecture

Figure 2. Sensor Architecture

There are 4 light-shielded rows followed by 488 photoactive rows. The first 4 and the last 4 photoactive rows are buffer rows giving a total of 480 lines of image data.

In the single output mode all pixels are clocked out of the Video L output in the lower left corner of the sensor. The first 12 empty pixels of each line do not receive charge from the vertical shift register. The next 24 pixels receive charge from the left light-shielded edge followed by 648 photosensitive pixels and finally 24 more light-shielded pixels from the right edge of the sensor. The first and last 4 photosensitive pixels are buffer pixels giving a total of 640 pixels of image data.

In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is clocked out Video L and the right half of the image is clocked
out Video R. Each row consists of 12 empty pixels followed by 24 light-shielded pixels followed by 324 photosensitive pixels. When reconstructing the image, data from Video R will have to be reversed in a line buffer and appended to the Video L data.
There are no dark reference rows at the top and 4 dark rows at the bottom of the image sensor. The 4 dark rows are not entirely dark and so should not be used for a dark reference level. Use the 24 dark columns on the left or right side of the image sensor as a dark reference.
Of the 24 dark columns, the first and last dark columns should not be used for determining the zero signal level. Some light does leak into the first and last dark columns. Only use the center 22 columns of the 24 column dark reference.

ESD Protection

Figure 3. ESD Protection

The ESD protection on the KAI-0340 is implemented using bipolar transistors. The substrate (SUB) forms the common collector of all the ESD protection transistors. The ESD pin is the common base of all the ESD protection transistors. Each protected pin is connected to a separate emitter as shown in Figure 3.
The ESD circuit turns on if the base-emitter junction voltage exceeds 17 V . Care must be taken while operating the image sensor, especially during the power on sequence, to not forward bias the base-emitter or base-collector junctions. If it is possible for the camera power up sequence
to forward bias these junctions then diodes D1 and D2 should be added to protect the image sensor. Put one diode D1 between the ESD and VSUB pins. Put one diode D2 on each pin that may forward bias the base-emitter junction. The diodes will prevent large currents from flowing through the image sensor. Note that external diodes D1 and D2 are optional and are only needed if it is possible to forward bias any of the junctions.
Note that diodes D1 and D2 are added external to the KAI-0340.

KAI-0340

Pin Description and Device Orientation

Figure 4. Pin Description (Top View)
Table 4. PIN DESCRIPTION

Pin No.	Symbol	
1	VOUTL	Description
2	RL	Reset Gate, Left
3	H2BL	Horizontal Clock, Phase 2, Barrier, Left
4	H1BL	Horizontal Clock, Phase 1, Barrier, Right
5	H1S	Horizontal Clock, Phase 1, Storage
6	GND	Ground
7	H2S	Horizontal Clock, Phase 2, Storage
8	H1BR	Horizontal Clock, Phase 1, Barrier, Right
9	H2BR	Horizontal Clock, Phase 2, Barrier, Right
10	RR	Reset Gate, Right
11	VOUTR	Video Output, Right
12	VDDR	VDD, Right
13	FD	Fast Line Dump Gate, Left and Right Columns
14	SUB	Substrate
15	GND	Ground
16	V2C	Vertical Clock, Phase 2, Center Rows
17	V2	Vertical Clock, Phase 2, Top and Bottom Rows
18	V1	Vertical Clock, Phase 1, Top and Bottom Rows
19	V1C	Vertical Clock, Phase 1, Center Rows
20	ESD	ESD
21	FDC	Fast Line Dump Gate, Center Columns
22	VDDL	V
12, Left		

[^1]2. If the vertical windowing option is not to be used, then the V1 and V1C pins should be driven from one clock driver. The V2 and V2C pins should also be driven from one clock driver.
3. If the fast dump windowing option is not to be used, then the FD and FDC pins should be driven from the same clock driver.
4. The VOUTR pin is not enabled in the KAI-0340-Single version.

IMAGING PERFORMANCE

Table 5. IMAGING PERFORMANCE OPERATIONAL CONDITIONS
(Unless otherwise noted, Imaging Performance Specifications are measured using the following conditions.)

Description	Condition
Frame Time (Note 5)	53 ms
Horizontal Clock Frequency	10 MHz
Light Source (Notes 6, 7)	Continuous Red, Green and Blue Illumination Centered at 450, 530 and 650 nm
Operation	Nominal Operating Voltages and Timing

5. Electronic shutter is not used. Integration time equals frame time.
6. LEDs used: Blue: Nichia NLPB500, Green: Nichia NSPG500S and Red: HP HLMP-8115
7. For monochrome sensor, only green LED used.

Table 6. IMAGING PERFORMANCE SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Unit	Sampling Plan
Temperature Tested at (${ }^{\circ}$ C)						

ALL CONFIGURATIONS

Photodiode CCD Dark Current	I_{PD}	0	40	200	$\mathrm{e} / \mathrm{p} / \mathrm{s}$	Die	27,40
Vertical CCD Dark Current	I_{VD}	0	400	1,000	$\mathrm{e} / \mathrm{p} / \mathrm{s}$	Die	27,40
Dark Current Doubling Temperature		N / A	7	$\mathrm{~N} / \mathrm{A}$	${ }^{\circ} \mathrm{C}$	Design	
Horizontal CCD Charge Capacity	H_{Ne}	80	$\mathrm{~N} / \mathrm{A}$	N / A	ke^{-}	Design	
Vertical CCD Charge Capacity	V_{Ne}	50	$\mathrm{~N} / \mathrm{A}$	N / A	ke^{-}	Design	
Horizontal CCD Charge Transfer Efficiency	HCTE	0.99999	$\mathrm{~N} / \mathrm{A}$	N / A		Design	
Vertical CCD Charge Transfer Efficiency	VCTE	0.99999	$\mathrm{~N} / \mathrm{A}$	N / A		Design	
Image Lag	Lag	0	<10	50	e^{-}	Design	
Anti-Blooming Factor	X_{AB}	100	300	$\mathrm{~N} / \mathrm{A}$		Design	
Vertical Smear	Smr	N / A	80	75	dB	Design	
Output Amplifier DC Offset (Note 8)	$\mathrm{V}_{\mathrm{ODC}}$	6	$\mathrm{~N} / \mathrm{A}$	12	V	Die	
Output Amplifier Impedance (Note 9)	$\mathrm{R}_{\mathrm{OUT}}$	100	150	200	Ω	Die	
Output Amplifier Bandwidth	$\mathrm{f}_{-3 \mathrm{~dB}}$	$\mathrm{~N} / \mathrm{A}$	140	$\mathrm{~N} / \mathrm{A}$	MHz	Design	
Output Amplifier Sensitivity	$\Delta \mathrm{V} / \mathrm{AN}$	N / A	30	$\mathrm{~N} / \mathrm{A}$	$\mu \mathrm{V} / \mathrm{e}$	Design	

MONOCHROME CONFIGURATIONS

Global Uniformity		0.0	1.5	3.0	$\% \mathrm{rms}$	Die	27,40
Global Peak to Peak Uniformity	PRNU	0.0	5.0	10.0	$\% \mathrm{pp}$	Die	27,40
Center Uniformity		0.0	0.6	1.0	$\% \mathrm{rms}$	Die	27,40
Photometric Sensitivity KAl-0340M (Note 11)		N/A	3.61	N/A	V/lux-sec	Design	

COLOR CONFIGURATIONS

Global Uniformity (Note 10)		0.0	2.0	5.0	$\%$ rms	Die	27,40
Global Peak to Peak Uniformity (Note 10)	PRNU	0.0	5.0	10.0	$\% \mathrm{pp}$	Die	27,40
Center Uniformity (Note 10)		0.0	1.0	2.0	$\%$ rms	Die	27,40
Photometric Sensitivity Gen2 Blue (B) Pixels (Note 11)		N/A	1.22	N/A	V/lux-sec	Design	
Photometric Sensitivity Gen2 Green (G) Pixels (Note 11)		N/A	1.80	N/A	V/lux-sec	Design	

KAI-0340

Table 6. IMAGING PERFORMANCE SPECIFICATIONS (continued)

Description	Symbol	Min.	Nom.	Max.	Unit	Temperature Tested at $\left({ }^{\circ} \mathrm{C}\right)$	

COLOR CONFIGURATIONS

Photometric Sensitivity Gen2 Red (R) Pixels (Note 11)		N / A	0.92	$\mathrm{~N} / \mathrm{A}$	V/lux-sec	Design
Photometric Sensitivity Gen1 Blue (B) Pixels (Notes 11, 12)		N / A	1.14	$\mathrm{~N} / \mathrm{A}$	$\mathrm{V} / \mathrm{lux}-\mathrm{sec}$	Design
Photometric Sensitivity Gen1 Green (G) Pixels (Notes 11,12)		N / A	1.51	$\mathrm{~N} / \mathrm{A}$	V/lux-sec	Design
Photometric Sensitivity Gen1 Red (R) Pixels (Notes 11,12)		N / A	0.66	$\mathrm{~N} / \mathrm{A}$	V/lux-sec	Design

8. Measured at sensor output with constant current load of IOUT $=-5 \mathrm{~mA}$ and during the floating diffusion reset interval (R high).
9. Last stage only. $\mathrm{C}_{\text {LOAD }}=10 \mathrm{pF}$. Then $\mathrm{f}_{-3 \mathrm{~dB}}=\left(1 /\left(2 \mathrm{n} \cdot\right.\right.$ ROUT $\left.\left.\cdot \mathrm{C}_{\text {LOAD }}\right)\right)$.
10. Per color.
11. Calculated using quantum efficiency, output amplifier sensitivity, 3200K Plankian source and a CM500S IR-cut filter.
12. This color filter set configuration (Gen1) is not recommended for new designs.

TYPICAL PERFORMANCE CURVES

Quantum Efficiency

Monochrome with Microlens

Figure 5. Monochrome with Microlens Quantum Efficiency

Monochrome without Microlens

Figure 6. Monochrome without Microlens Quantum Efficiency

Color (Bayer RGB) with Microlens

Figure 7. Color (Bayer RGB) with Microlens Quantum Efficiency

Angular Quantum Efficiency

Monochrome with Microlens

For the curves marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD.
For the curves marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD.

Figure 8. Angular Quantum Efficiency

KAI-0340

Power Estimated

Figure 9. Power

KAI-0340

Frame Rates

Frames rates are for continuous mode operation.
Table 7. FRAME RATES

Description	KAI-0340-Single and KAI-0340-Dual Single Output (fps)	KAI-0340-Dual Only Dual Output (fps)
640×480	112	214
228×480	306	581
640×164	325	618
228×164	877	1,637
228×55	2,000	3,400

> | - | 640×480 Full Field Single Output |
| :--- | :--- |
| - | 640×480 Full Field Dual Outputs |
| - | $228(\mathrm{H}) \times 480(\mathrm{~V})$ Center Columns One Output |
| - | $228(\mathrm{H}) \times 480(\mathrm{~V})$ Center Columns Dual Outputs |
| - | $640(\mathrm{H}) \times 164(\mathrm{~V})$ Center Rows One Output |
| - | $640(\mathrm{H}) \times 164(\mathrm{~V})$ Center Rows Dual Outputs |
| - | $228(\mathrm{H}) \times 164(\mathrm{~V})$ Center Rows and Columns One Output |$\quad 228(\mathrm{H}) \times 164(\mathrm{~V})$ Center Rows and Columns Dual Outputs

Figure 10. Frame Rates

KAI-0340

DEFECT DEFINITIONS

Table 8. DEFECT DEFINITIONS

Description	Definition	Maximum	Temperature(s) Tested at $\left({ }^{\circ} \mathrm{C}\right)$

MONOCHROME (EXCLUDING KAI-0340-ABB-CB-A2-SINGLE)

Major Dark Field Defective Pixel	Defect $\geq 16 \mathrm{mV}$	2	27,40
Major Bright Field Defective Pixel	Defect $\geq 11 \%$	0	27,40
Minor Dark Field Defective Pixel	Defect $\geq 4 \mathrm{mV}$	100	27,40
Dead Pixel	Defect $\geq 80 \%$	0	27,40
Saturated Pixel	Defect $\geq 30 \mathrm{mV}$	0	27,40
Cluster Defect	A Group of 2 to 10 Contiguous Major Defective Pixels	0	27,40
Column Defect	A Group of more than 10 Contiguous Major Defective Pixels along a Single Column	0	27,40

MONOCHROME (KAI-0340-ABB-CB-A2-SINGLE ONLY)

Major Dark Field Defective Pixel	Defect $\geq 16 \mathrm{mV}$	2	27,40
Major Bright Field Defective Pixel	Defect $\geq 11 \%$	10	27,40
Minor Dark Field Defective Pixel	Defect $\geq 4 \mathrm{mV}$	100	27,40
Dead Pixel	Defect $\geq 80 \%$	0	27,40
Saturated Pixel	Defect $\geq 30 \mathrm{mV}$	0	27,40
Cluster Defect	A Group of 2 to 10 Contiguous Major Defective Pixels	0	27,40
Column Defect	A Group of more than 10 Contiguous Major Defective Pixels along a Single Column	0	27,40

COLOR VERSIONS

Major Dark Field Defective Pixel	Defect $\geq 16 \mathrm{mV}$	2	27,40
Major Bright Field Defective Pixel	Defect $\geq 11 \%$	2	27,40
Minor Dark Field Defective Pixel	Defect $\geq 4 \mathrm{mV}$	27,40	
Dead Pixel	Defect $\geq 80 \%$	0	27,40
Saturated Pixel	Defect $\geq 30 \mathrm{mV}$	0	27,40
Cluster Defect	A Group of 2 to 10 Contiguous Major Defective Pixels	0	27,40
Column Defect	A Group of more than 10 Contiguous Major Defective Pixels along a Single Column	0	27,40

Defect Map

No defect maps are available for the KAI-0340 image sensor.

TEST DEFINITIONS

Test Regions of Interest

Active Area ROI
Pixel $(1,1)$ to Pixel $(640,480)$
Center 100 by 100 ROI: Pixel $(270,190)$ to $\operatorname{Pixel}(369,289)$
Only the active pixels are used for performance and defect tests.

Test Sub-Regions of Interest

Pixel
$(1,1)$

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Figure 11. Test Sub-Regions of Interest

Over-Clocking

The test system timing is configured such that the sensor is overclocked in both the vertical and horizontal directions. See Figure 12 for a pictorial representation of the regions.

Figure 12. Overclock Regions of Interest

Tests

Global Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 420 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 600 mV . Global non-uniformity is defined as

Global Non-Uniformity $=100 \cdot\left(\frac{\text { Active Area Standard Deviation }}{\text { Active Area Signal }}\right)$ Units : \% rms
Active Area Signal = Active Area Average - H. Overclock Average
Global Peak-to-Peak Non-Uniformity
This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 420 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 600 mV . The sensor is partitioned into 25 sub-regions of interest, each of which is 128 by 96 pixels in size. The average signal level of each of the 25 sub-regions of interest (ROI) is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

$$
A[i]=(\text { ROI Average }- \text { Horizontal Overclock Average })
$$

Where $\mathrm{i}=1$ to 25 . During this calculation on the 25 sub-regions of interest, the maximum and minimum average signal levels are found. The global peak-to-peak non-uniformity is then calculated as:

Global Non-Uniformity $=100 \cdot\left(\frac{A[i] \text { Max. Signal }-A[i] \text { Min. Signal }}{\text { Active Area Signal }}\right)$
Units: \% pp
Active Area Signal = Active Area Average - H. Overclock Average

Center Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 420 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 600 mV . Defects are excluded for the calculation of this test. This test is performed on the center 100 by 100 pixels (See Test Regions of Interest) of the sensor. Center non-uniformity is defined as:

[^2]
Dark Field Defect Test

This test is performed under dark field conditions. The sensor is partitioned into 25 sub-regions of interest, each of which is 128 by 96 pixels in size. In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified in "Defect Definitions" section.

Bright Field Defect Test

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 420 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 600 mV . The average signal level of all active pixels is found. The bright and dark thresholds are set as:

Dark Defect Threshold = Active Area Signal •Threshold
 Bright Defect Threshold = Active Area Signal •Threshold

The sensor is then partitioned into 25 sub-regions of interest, each of which is 128 by 96 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark threshold specified.

Example for major bright field defective pixels:

- Average value of all active pixels is found to be 420 mV .
- Dark defect threshold: $420 \mathrm{mV} \cdot 11 \%=46 \mathrm{mV}$
- Bright defect threshold: $420 \mathrm{mV} \cdot 11 \%=46 \mathrm{mV}$
- Region of interest \#1 selected. This region of interest is pixels 1,1 to pixels 128,96.
- Median of this region of interest is found to be 420 mV .
- Any pixel in this region of interest that is $\geq(420+46 \mathrm{mV}) 466 \mathrm{mV}$ in intensity will be marked defective.
- Any pixel in this region of interest that is $\leq(420-46 \mathrm{mV}) 374 \mathrm{mV}$ in intensity will be marked defective.
- All remaining 24 sub-regions of interest are analyzed for defective pixels in the same manner.

For the color sensor, the threshold for each color channel is determined independently.

OPERATION

Absolute maximum rating is defined as a level or condition that should not be exceeded at any time per the
description. If the level or the condition is exceeded, the device will be degraded and may be damaged.

Table 9. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Min.	Max.	Unit
Operating Temperature (Note 13)	T	-50	70	${ }^{\circ} \mathrm{C}$
Humidity (Note 14)	RH	5	90	$\%$
Output Bias Current (Note 15)	IOUT	0.0	10	mA
Off-chip Load (Note 16)	C_{L}	N / A	10	pF

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
13. Noise performance will degrade at higher temperatures.
14. $\mathrm{T}=25^{\circ} \mathrm{C}$. Excessive humidity will degrade MTTF.
15. Each output. See Figure 13. Note that the current bias affects the amplifier bandwidth.
16. With total output load capacitance of $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ between the outputs and AC ground.

Table 10. ABSOLUTE VOLTAGE RATINGS BETWEEN PINS

Description	Min.	Max.	Unit
RL, RR, H1S, H2S, H1BL, H2BL, H1BR, H2BR to ESD	0	17	V
Pin to Pin with ESD Protection (Note 17)	-17	17	
VDDL, VDDR to GND	0	25	V

17.Pins with ESD protection are: RL, RR, H1S, H2S, H1BL, H2BL, H1BR, and H2BR.

Table 11. DC OPERATING CONDITIONS

Description	Symbol	Min.	Nom.	Max.	Unit	Maximum DC Current
Output Amplifier Supply (Notes 18, 21)	V_{DD}	14.75	15.0	15.25	V	2.5 mA
Ground	GND	0.0	0.0	0.0	V	
Substrate (Notes 19, 23)	SUB	8.0	$\mathrm{~V}_{\mathrm{AB}}$	15.0	V	
ESD Protection (Note 20)	ESD	-9.25	-9.0	-8.75	V	2.0 mA
Output Bias Current (Note 22)	IOUT	0.0	5.0	10.0	mA	

18. The maximum DC current is for one output unloaded and is shown as $I_{R D}+I_{S S}$ in Figure 13. This is the maximum current that the first two stages of one output amplifier plus the reset drain bias circuit will draw. This value is with Vout disconnected.
19. The operating value of the substrate voltage, V_{AB}, will be marked on the shipping container for each device. The shipping container will be marked with two V_{AB} voltages. One V_{AB} will be for a 600 mV charge capacity and the other V_{AB} will be for a $1,200 \mathrm{mV}$ charge capacity. The 600 mV charge capacity is for operation of the horizontal clock at frequencies greater than 20 MHz . The $1,200 \mathrm{mV}$ charge capacity V_{AB} value may be used for horizontal clock frequencies at or below 20 MHz .
20. VESD must be more negative than H1L, H2L and RL during sensors operation AND during camera power turn on.
21. Both VDDL and VDDR must both be supplied.
22. One output.
23. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.

Figure 13. Output Amplifier

AC Operating Conditions

Table 12. CLOCK LEVELS

Description	Symbol	Min.	Nom.	Max.	Unit
Vertical CCD Clock High	V2H	9.5	10.0	10.5	V
Vertical CCD Clocks Midlevel	V1M, V2M	-0.2	0.0	0.2	V
Vertical CCD Clocks Low	V1L, V2L	-9.5	-9.0	-8.5	V
Horizontal CCD Clocks High (Note 24)	H1H, H2H	-0.5	0.0	0.5	V
Horizontal CCD Clocks Low (Note 24)	H1L, H2L	-5.5	-5.0	-4.5	V
Reset Clock High (Note 25)	RH	1.5	2.0	2.5	V
Reset Clock Low (Note 25)	RL	-3.5	-3.0	-2.5	V
Electronic Shutter Voltage (Note 26)	VES	44	48	52	V
Fast Dump High	FDH	4.0	5.0	5.5	V
Fast Dump Low	FDL	-9.5	-9.0	-8.5	V

24. The amplitude of the horizontal clock must be at least 4.5 V .
25. The amplitude of the reset clock must be at least 4.5 V .
26. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.

The Figure 14 shows the DC bias (SUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground.

KAI-0340

Figure 14. DC Bias and AC Clock Applied to the SUB Pin

Table 13. CLOCK LINE CAPACITANCE

Pin	Approximate Capacitance	Unit
V1C	3	nF
V1	5	nF
V2	5	nF
V2C	2	nF
H2BL	25	pF
H1BL	25	pF
H1S	40	pF
H2S	40	pF
H1BR	25	pF
RL	25	pF
RR	20	pF
FDC	20	pF
FD	25	pF

KAI-0340

TIMING

Timing Requirements

Table 14. TIMING REQUIREMENTS

Description	Symbol	Min.	Unit
HCCD Delay	t_{HD}	200	ns
VCCD Transfer Time	$\mathrm{t}_{\mathrm{VCCD}}$	200	ns
Photodiode Transfer Time	$\mathrm{t}_{\mathrm{V} 3 \mathrm{rd}}$	300	ns
VCCD Pedestal Time	$\mathrm{t}_{3 \mathrm{P}}$	15	$\mu \mathrm{~s}$
VCCD Delay	$\mathrm{t}_{3 \mathrm{D}}$	5	$\mu \mathrm{~s}$
VCCD Frame Delay	$\mathrm{t}_{3 \mathrm{~L}}$	15	$\mu \mathrm{~s}$
VCCD Line End Delay	t_{EL}	25	ns
HCCD Clock Period (Note 27)	t_{H}	25	ns
Reset Pulse Time	t_{R}	2.5	ns
Shutter Pulse Time	t_{S}	1.0	$\mu \mathrm{~s}$
Shutter Pulse Delay	t_{SD}	1.0	$\mu \mathrm{~s}$
Fast Line Dump Delay	t_{FD}	75	ns
VCCD Clock Overlap	t_{OV}	50	$\%$

27. For operation at the minimum HCCD clock period (40 MHz), the substrate voltage must be set to limit the signal at the output to 600 mV . 28. Each clock pulse width is defined for t_{WH} or t_{WL}.

KAI-0340

Timing Sequences

Timing Sequence A: Photodiode to VCCD Transfer, Entire Image

Figure 15. Timing Sequence A

Figure 16. Timing Sequence B

KAI-0340

Timing Sequence C: Photodiode to VCCD Transfer, Center 164 Rows

Figure 17. Timing Sequence C

Figure 18. Timing Sequence D

KAI-0340

Timing Modes

Sensor Architecture

Figure 19. Sensor Architecture

When the sensor is operated in single output mode using the left output, the horizontal CCD is 708 pixels long. This assumes no horizontal over clocking is done.

```
708
```

When the sensor is operated in dual output mode, the horizontal CCD is dived into left and right registers. Each half of the register is 360 pixels long. This assumes no horizontal over clocking is done.

360	360

One Output Full Field

708 HCCD Clock Cycles per Line 492 VCCD Clock Cycles

VCCD Overclocking: Allowed HCCD Overclocking: Allowed

H1 Timing: Connect to H1S, H1BL, H2BR H2 Timing: Connect to H2S, H2BL, H1BR

FDH = Active
FDL = Inactive

Figure 20. One Output Full Field

KAI-0340

Two Outputs Full Field

Figure 21. Two Outputs Full Field

KAI-0340

One Output Center Columns

Figure 22. One Output Center Columns

KAI-0340

Two Outputs Center Columns

120 HCCD Clock Cycles per Line
492 VCCD Clock Cycles
VCCD Overclocking: Allowed
HCCD Overclocking: Not Allowed
H1 Timing: Connect to H1S, H1BL, H1BR H2 Timing: Connect to H2S, H2BL, H2BR

FDH = Active
FDL = Inactive

Figure 23. Two Outputs Center Columns

KAI-0340

One Output Center Rows

708 HCCD Clock Cycles per Line 163 VCCD Clock Cycles

VCCD Overclocking: Not Allowed HCCD Overclocking: Allowed

H1 Timing: Connect to H1S, H1BL, H2BR H2 Timing: Connect to H2S, H2BL, H1BR

FDH = Active
FDL = Inactive

Figure 24. One Output Center Rows

KAI-0340

Two Outputs Center Rows

Figure 25. Two Outputs Center Rows

KAI-0340

One Output Center Rows and Columns

264 HCCD Clock Cycles per Line 163 VCCD Clock Cycles

VCCD Overclocking: Not Allowed HCCD Overclocking: Not Allowed

H1 Timing: Connect to H1S, H1BL, H2BR H2 Timing: Connect to H2S, H2BL, H1BR

FDH = Active
FDL = Inactive

Figure 26. One Output Center Rows and Columns

KAI-0340

Two Outputs Center Rows and Columns

Left Output

120 HCCD Clock Cycles per Line 163 VCCD Clock Cycles

VCCD Overclocking: Not Allowed HCCD Overclocking: Not Allowed

H1 Timing: Connect to H1S, H1BL, H1BR
H2 Timing: Connect to H2S, H2BL, H2BR
FDH = Active

Figure 27. Two Outputs Center Rows and Columns

Timing Details

Pixel Timing

Figure 28. Pixel Timing Detail

Vertical Clock Phase 1 - Line Timing Detail

The following timing detail applies if any of the center row timing modes are selected. If the center row timing modes are not to be used, then the V1 and V1C pins should be tied together and driven from one clock driver.

During the line timing, the V1 and V1C rise and fall times need to be identical. Since the V1 capacitance is
approximately twice the V1C capacitance, the clock driver circuits must be adjusted to ensure equal rise and fall times.

The figure below is an example of unacceptable V1 and V1C clock waveforms.

The figures below are examples of acceptable V1 and V1C clock waveforms.

KAI-0340

Vertical Clock Phase 2 - Line Timing Detail

The following timing detail applies if any of the center row timing modes are selected. If the center row timing modes are not to be used, then the V2 and V2C pins should be tied together and driven from one clock driver.

During the line timing, the V2 and V2C rise and fall times need to be identical. Since the V2 capacitance is
approximately twice the V2C capacitance, the clock driver circuits must be adjusted to ensure equal rise and fall times.

The figure below is an example of unacceptable V2 and V2C clock waveforms.

The figures below are examples of acceptable V2 and V2C clock waveforms.

Vertical Clock Phases 1 and 2 - Line Timing Detail

The following line timing detail applies to all modes. The V1 and V1C clocks must be symmetrical to the V2 and V2C
clocks. The figure below is an example of unacceptable V1, V1C, V2 and V2C clock waveforms.

The figures below are of acceptable V1, V1C, V2 and V2C clock waveforms.

Vertical Clock Phase 1 - Frame Timing Detail

The following timing detail applies if any of the center row timing modes are selected. If the center row timing modes are not to be used, then the V1 and V1C pins should be tied together and driven from one clock driver.

During the frame timing, the V1 and V1C rise and fall times need to be identical. Since the V1 capacitance is
approximately twice the V1C capacitance, the clock driver circuits must be adjusted to ensure equal rise and fall times.

The figure below is an example of unacceptable V1 and V1C clock waveforms.

The figures below are examples of acceptable V1 and V1C clock waveforms

Vertical Clock Phase 2 - Frame Timing Detail

The following timing detail applies if any of the center row timing modes are selected. If the center row timing modes are not to be used, then the V2 and V2C pins should be tied together and driven from one clock driver.

During the frame timing, the V2 and V2C rise and fall times need to be identical. Since the V2 capacitance is
approximately twice the V2C capacitance, the clock driver circuits must be adjusted to ensure equal rise and fall times.

The figure below is an example of unacceptable V2 and V2C clock waveforms during the frame timing.

The figures below are examples of acceptable V2 and V2C clock waveforms during the frame timing.

KAI-0340

Vertical Clock Phases 1 and 2 - Frame Timing Detail
The following frame timing detail applies to all modes. The V1 and V1C clocks must be symmetrical to the V2 and V2C clocks. Also, during the tV3rd timing, the V1 and V2 waveform edges should be aligned to occur at the same time.

The figures below are of acceptable V1, V1C, V2 and V2C clock waveforms.

KAI-0340

Electronic Shutter Timing

Figure 29. Electronic Shutter Timing

Electronic Shutter - Integration Time Definition

Figure 30. Integration Time Definition

KAI-0340

Fast Line Dump Timing

The figure below shows an example of dumping three lines for all rows.

Figure 31. Fast Line Dump Timing

Example HCCD Clock Driver

The HCCD clock inputs should be driven by buffers capable of driving a capacitance of 40 pF and having a full voltage swing of at least 4.7 V . A 74 AC 04 or equivalent is recommended to drive the HCCD. The HCCD requires a 0.0 to 5.0 V clock. This clock level can be obtained by capacitive coupling and a diode to clamp the high level to
ground. Resistors R2 and R6 are used to dampen the signal to prevent overshoots. The values of resistors R2 and R6 shown in the schematics below are only suggestions. The actual value required should be selected for each camera design.

Single Output Only:

Figure 32. Single Output Only

KAI-0340

Dual Output Only:

Figure 33. Dual Output Only
Selectable Single or Dual Output:

Figure 34. Selectable Single or Dual Output

The inputs to the above circuits, H 1 and H 2 , are 5 V logic from the timing generator (a programmable gate array for example). If the camera is to have selectable single or dual output modes of operation, then the timing logic needs to
generate two extra signals for the H1BR and H2BR timing. For single output mode program the timing such that $\mathrm{H} 1 \mathrm{BR}=\mathrm{H} 2$ and $\mathrm{H} 2 \mathrm{BR}=\mathrm{H} 1$. For dual output mode program the timing such that $\mathrm{H} 1 \mathrm{BR}=\mathrm{H} 1$ and $\mathrm{H} 2 \mathrm{BR}=\mathrm{H} 2$.

KAI-0340

STORAGE AND HANDLING

Table 15. CLIMATIC REQUIREMENTS

Description	Symbol	Minimum	Maximum	Unit
Temperature (Note 29)	$\mathrm{T}_{\text {ST }}$	-55	80	${ }^{\circ} \mathrm{C}$
Humidity (Note 30)	RH	5	90	$\%$

29. Long-term exposure toward the maximum temperature will accelerate color filter degradation.
$30 . \mathrm{T}=25^{\circ} \mathrm{C}$. Excessive humidity will degrade MTTF.

For information on ESD and cover glass care and cleanliness, please download the Image Sensor Handling and Best Practices Application Note (AN52561/D) from www.onsemi.com.

For information on environmental exposure, please download the Using Interline CCD Image Sensors in High Intensity Lighting Conditions Application Note (AND9183/D) from www.onsemi.com.

For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com.

For quality and reliability information, please download the Quality \& Reliability Handbook (HBD851/D) from www.onsemi.com.

For information on device numbering and ordering codes, please download the Device Nomenclature technical note (TND310/D) from www.onsemi.com.

For information on Standard terms and Conditions of Sale, please download Terms and Conditions from www.onsemi.com.

KAI-0340

MECHANICAL INFORMATION

Completed Assembly

Notes:
31. See Available Part Configurations in Ordering Section for a description of the marking code.
32. Lid shall not extend beyond ceramic edge.
33. Light shield shown for reference only. Quartz version is smaller.
34. Units: IN [mm].

Figure 35. Completed Assembly

KAI-0340

Die to Package Alignment

Notes:
35. Center of image area is offset from center of package by $(0.00,0.00)$ IN nominal.
36. Die is aligned within ± 1 degree of any package cavity edge.
37. Units: IN [mm].

Figure 36. Die to Package Alignment

KAI-0340

Glass

Clear Cover Glass

Notes:
38. Substrate: Schott D-263T eco or equivalent.
39. Top and Bottom edge chamfers $=0.008[0.20]$.
40. Corner chamfers $=0.020[0.50]$.
41. Dust, scratch, dig specification: 10 microns max.
42. Units: IN [mm].

Figure 37. Clear Cover Glass Drawing

KAI-0340

Quartz Cover Glass

Notes:
43. Substrate: SK1300.
44. Top and Bottom edge chamfers $=0.008$ [0.20].
45. Corner chamfers $=0.020$ [0.50].
46. Dust, scratch, dig specification: 10 microns max.
47. Units: IN [mm].

Figure 38. Quartz Cover Glass Drawing

KAI-0340

Glass Transmission

Clear Cover Glass

Figure 39. Clear Cover Glass Transmission

Quartz Cover Glass

Figure 40. Quartz Cover Glass Transmission

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: 1. The pins are on a $0.050^{\prime \prime}$ spacing
[^2]: Center ROI Non-Uniformity $=100 \cdot\left(\frac{\text { Center ROI Standard Deviation }}{\text { Center ROI Signal }}\right)$
 Units: \% rms

 Center ROI Signal = Center ROI Average - H. Overclock Average

