ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

8-Input Universal Shift/ **Storage Register with Common Parallel I/O Pins**

The MC74AC299/74ACT299 is an 8-bit universal shift/storage register with 3-state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q₀, Q₇ to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

- Common Parallel I/O for Reduced Pin Count
- Additional Serial Inputs and Outputs for Expansion
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT299 Has TTL Compatible Inputs
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative

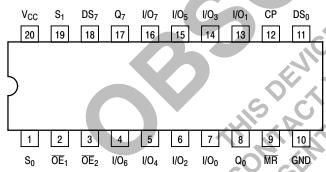


Figure 1. Pinout: 20-Lead Packages Conductors (Top View)

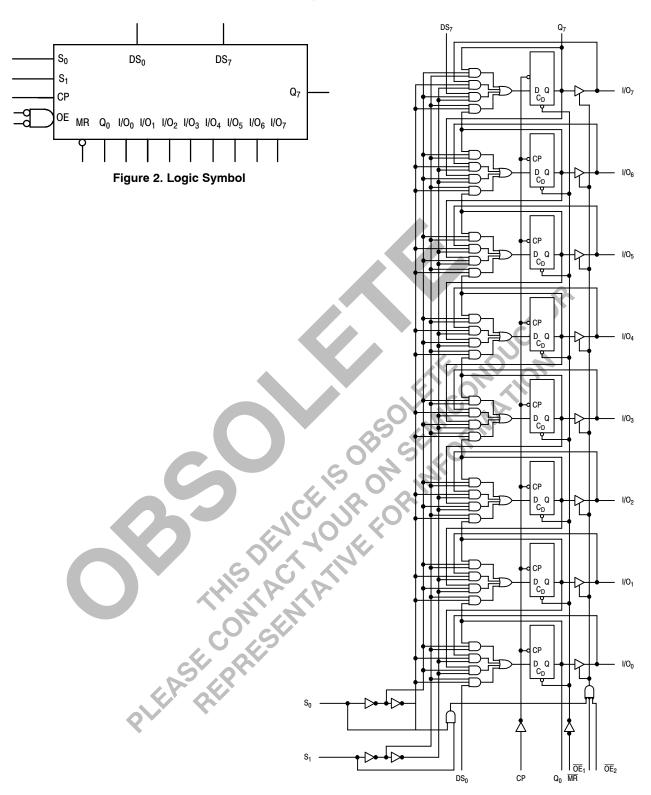
PIN ASSIGNMENT

PIN	FUNCTION
CP	Clock Pulse Input
DS ₀	Serial Data Input for Right Shift
DS ₇	Serial Data Input for Left Shift
S ₀ , S ₁	Mode Select Inputs
MR	Asynchronous Master Reset
\overline{OE}_1 , \overline{OE}_2	3-State Output Enable Inputs
I/O ₀ -I/O ₇	Parallel Data Inputs or 3-State Parallel Outputs
Q ₀ , Q ₇	Serial Outputs

ON Semiconductor®

http://onsemi.com

PDIP-20 **N SUFFIX CASE 738**


SO-20 **DW SUFFIX CASE 751**

ORDERING INFORMATION

Device	Package	Shipping
MC74AC299N	PDIP-20	18 Units/Rail
MC74ACT299N	PDIP-20	18 Units/Rail
MC74AC299DW	SOIC-20	38 Units/Rail
MC74AC299DWR2	SOIC-20	1000 Tape & Reel
MC74ACT299DW	SOIC-20	38 Units/Rail
MC74ACT299DWR2	SOIC-20	1000 Tape & Reel

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 9 of this data sheet.

NOTE: That this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

FUNCTIONAL DESCRIPTION

The MC74AC299/74ACT299 contains eight edge–triggered D–type flip–flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_0 and S_1 , as shown in the Truth Table. All flip–flop outputs are brought out through 3–state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_0 and Q_7 are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on \overline{MR} overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either \overline{OE}_1 or \overline{OE}_2 disables the 3_state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3–state buffers are also disabled by HIGH signals on both S_0 and S_1 in preparation for a parallel load operation.

TRUTH TABLE

	Inp	uts		Pagnamag
MR	S ₁	S ₀	СР	Response
L	Χ	Χ	Х	Asynchronous Reset; Q ₀ –Q ₇ = LOW
Н	Н	Н	」	Parallel Load; I/O _n → Q _n
Н	L	Н		Shift Rights; $DS_0 \rightarrow Q_0$, $Q_0 \rightarrow Q_1$, etc.
Н	Н	L	Г	Shift Left; $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc.
Н	L⊸	L	Х	Hold

H = HIGH Voltage Level

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
l _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V	Complex Velters	'AC	2.0	5.0	6.0	V
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	ı	V _{CC}	V
	, D (X	V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
	Q	V _{CC} @ 5.5 V	-	25	-	
+ +.	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	ns/V
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	115/ V
TJ	Junction Temperature (PDIP)		-	-	140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		-	-	24	mA

^{1.} V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.

L = LOW Voltage Level

X = Immaterial

 $[\]Gamma$ = LOW-to-HIGH Transition

^{2.} V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = ·	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	$V_{IN} = V_{IL}$ or V_{IH} -12 mA I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	MD	Ι _{ΟUT} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44		$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA $I_{OL} \qquad 24 \text{ mA}$ 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	S	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OZT}	Maximum 3–State Current	5.5		±0.6	±6.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
I _{OLD}	†Minimum Dynamic	5.5	10	(- <u>-</u>	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5		_	-75	mA	V _{OHD} = 3.85 V Min
Icc	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74AC			
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Input Frequency	3.3 5.0	90 130	-	1 1	80 105	1 1	MHz	3–3
t _{PLH}	Propagation Delay CP to Q _{0 or} Q ₇	3.3 5.0	8.5 5.5	-	20.5 14	7.0 4.5	22 15	ns	3–6
t _{PHL}	Propagation Delay CP to Q _{0 or} Q ₇	3.3 5.0	8.5 5.5	1 1	21.5 14.5	7.0 5.0	23 16	ns	3–6

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

		V _{CC} *		74AC		74.	AC		
Symbol	Parameter		T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay CP to I/O _n	3.3 5.0	9.0 6.0	- -	20.5 14.5	7.5 5.0	22.5 16	ns	3–6
t _{PHL}	Propagation Delay CP to I/O _n	3.3 5.0	10 6.5	-	23 16	8.5 6.0	24.5 17.5	ns	3–6
t _{PHL}	Propagation Delay $\overline{\rm MR}$ to ${\rm Q_0}$ or ${\rm Q_7}$	3.3 5.0	9.0 5.5	-	22.5 15.5	7.5 5.0	25.0 17.0	ns	3–6
t _{PHL}	Propagation Delay MR to I/On	3.3 5.0	9.0 5.5	-	21.5 15.0	7.5 5.0	24.0 16.5	ns	3–6
t _{PZH}	Output Enable Time OE to I/On	3.3 5.0	7.0 4.5	1	18 12.5	6.0 4.0	19.5 13.5	ns	3–7
t _{PZL}	Output Enable Time OE to I/On	3.3 5.0	7.0 5.0	1	18 12.5	6.0 4.0	20.5 14	ns	3–8
t _{PHZ}	Output Disable Time OE to I/On	3.3 5.0	6.5 3.5	-	18.5 14	5.5 3.0	19.5 15	ns	3–7
t _{PLZ}	Output Disable Time OE to I/On	3.3 5.0	5.5 3.5	-//	17 12.5	4.5 2.0	19 13.5	ns	3–8

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

PLZ	OE to I/O _n	5.0	3.5	- 12.5	2.0 13.5		
Voltage Ra	nge 3.3 V is 3.3 V ±0.3 V. nge 5.0 V is 5.0 V ±0.5 V.		BS	OF MIC	MA		
110 01 211		Co) 2	74AC	74AC		
Symbol	Parameter	V _{cc} * (V)	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Fig. No.
		O	Тур	Guaranteed	d Minimum		
t _s	Setup Time, HIGH or LOW S ₀ or S ₁ to CP	3.3 5.0	- -	8.0 5.0	8.5 5.5	ns	3–9
t _h	Hold Time, HIGH or LOW S ₀ or S ₁ to CP	3.3 5.0	- -	0.5 1.0	0.5 1.0	ns	3–9
t _s	Setup Time, HIGH or LOW I/On to CP	3.3 5.0		5.5 3.5	6.0 4.0	ns	3–9
t _h	Hold Time, HIGH or LOW I/On to CP	3.3 5.0		0 1.0	0 1.0	ns	3–9
t _s	Setup Time, HIGH or LOW DS ₀ or DS ₇ to CP	3.3 5.0	-	6.5 4.0	7.0 4.5	ns	3–6
t _h	Hold Time, HIGH or LOW DS ₀ or DS ₇ to CP	3.3 5.0	- -	0 1.0	0.5 1.0	ns	3–6
t _w	CP Pulse Width, LOW	3.3 5.0	- -	4.5 3.5	5.0 3.5	ns	3–6
t _w	MR Pulse Width, LOW	3.3 5.0	- -	4.5 3.5	5.0 3.5	ns	3–9
t _{rec}	Recovery Time MR to CP	3.3 5.0	- -	1.5 1.5	1.5 1.5	ns	3–9

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	CT	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	-	0.36 0.36	0.44 0.44	٧	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	Ā	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OZT}	Maximum 3-State Current	5.5	_	±0.6	±6.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	OY,	1.5	mA	V _I = V _{CC} - 2.1 V
I _{OLD}	†Minimum Dynamic	5.5	5	0	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	() - <u> </u>	2-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	0)	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test.
†Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

	Parameter			74ACT		74	CT			
Symbol		V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = - to +8 C _L = 8		Unit	Fig. No.	
			Min	Тур	Max	Min	Max			
f _{max}	Maximum Input Frequency	5.0	120	-	-	110	-	MHz	3–3	
t _{PLH}	Propagation Delay CP to Q_0 or Q_7	5.0	4.0	-	12.5	3.0	14	ns	3–6	
t _{PHL}	Propagation Delay CP to Q_0 or Q_7	5.0	4.0	-	13.5	3.5	15	ns	3–6	
t _{PLH}	Propagation Delay CP to I/O _n	5.0	4.5	-	12.5	4.5	13.5	ns	3–6	
t _{PHL}	Propagation Delay CP to I/O _n	5.0	5.0	1	15	4.5	16.5	ns	3–6	
t _{PHL}	Propagation Delay MR to Q _{0 or} Q ₇	5.0	4.0	-	15	4.0	18	ns	3–6	
t _{PHL}	Propagation Delay MR to I/On	5.0	4.0	-	14.5	3.5	17.5	ns	3–6	
t _{PZH}	Output Enable Time OE to I/On	5.0	2.5	-	12	1.5	13	ns	3–7	
t _{PZL}	Output Enable Time	5.0	2.0	1-1	12	1.5	13.5	ns	3–8	
t _{PHZ}	Output Disable Time OE to I/On	5.0	2.0		12.5	2.0	13.5	ns	3–7	
t _{PLZ}	Output Disable Time OE to I/On	5.0	2.5	7 - 3	11.5	2.0	12.5	ns	3–8	
*Voltage Ran	Output Disable Time OE to I/On Output Disable Time OE to I/On Output Disable Time OE to I/On nge 5.0 V is 5.0 V ±0.5 V.	CIN		5R.						

^{*}Voltage Range 5.0 V is 5.0 V ±0.5 V.

AC OPERATING REQUIREMENTS

	Parameter			74ACT	74ACT		
Symbol				_A = +25°C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaranteed	d Minimum		
t _s	Setup Time, HIGH or LOW S ₀ or S ₁ to CP	5.0	-	5.0	5.5	ns	3–9
t _h	Hold Time, HIGH or LOW S ₀ or S ₁ to CP	5.0	ı	1.0	1.0	ns	3–9
t _s	Setup Time, HIGH or LOW I/On to CP	5.0	ı	4.0	4.5	ns	3–9
t _h	Hold Time, HIGH or LOW I/O _n to CP	5.0	-	1.0	1.0	ns	3–9
t _s	Setup Time, HIGH or LOW DS_0 or DS_7 to CP	5.0		4.5	5.0	ns	3–6
t _h	Hold Time, HIGH or LOW DS_0 or DS_7 to CP	5.0	-	1.0	1.0	ns	3–6
t _w	CP Pulse Width HIGH or LOW	5.0		4.0	4.5	ns	3–9
t _w	MR Pulse Width, LOW	5.0	-	3.5	3.5	ns	3–9
t _{rec}	Recovery Time MR to CP	5.0	-	1.5	1.5	ns	3–9

^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	170	pF	V _{CC} = 5.0 V

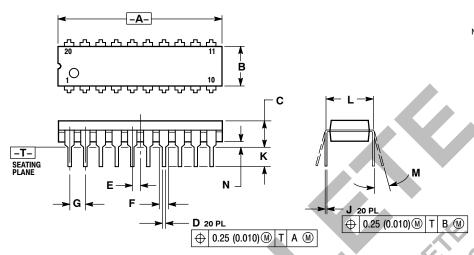
MARKING DIAGRAMS

PDIP-20

<u>ሉ ሉ ሉ ሉ ሉ ሉ ሉ ሉ ሉ</u> MC74AC299N 0 AWLYYWW

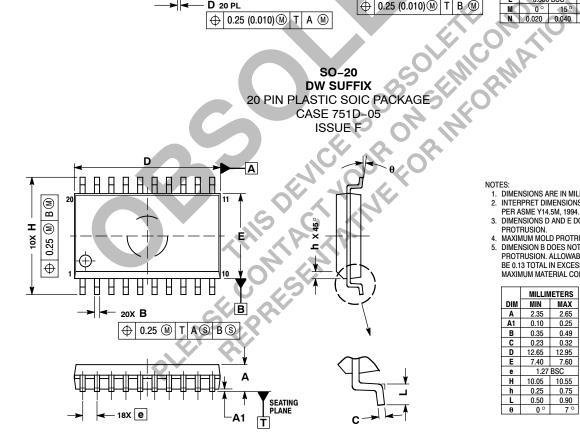
SO-20

AC299 **AWLYYWW**


MC74ACT299N O AWLYYWW VVVVVVVVV

ACT299 AWLYYWW

PIERSE OF SERVER OF THE OFFICE OF SERVER OF THE OFFICE OF SERVER OF THE OFFICE OFFICE OF THE OFFICE OF THE OFFICE OFFICE OFFICE OFFICE OFFICE


PACKAGE DIMENSIONS

PDIP-20 **N SUFFIX** 20 PIN PLASTIC DIP PACKAGE CASE 738-03 **ISSUE E**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.010	1.070	25.66	27.17
В	0.240	0.260	6.10	6.60
С	0.150	0.180	3.81	4.57
D	0.015	0.022	0.39	0.55
Е	0.050 BSC		1.27 BSC	
F	0.050	0.070	1.27	1.77
G	0.100 BSC		2.54 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62 BSC	
M	°	15°	0°	15°
N	0.020	0.040	0.51	1.01

- AUTES:

 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
c	0.23	0.32		
ם	12.65	12.95		
Е	7.40	7.60		
е	1.27 BSC			
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC74AC299/D