

Is Now Part of



## **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="mailto:www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="mailto:Fairchild\_questions@onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and

#### FAIRCHILD

SEMICONDUCTOR

### CD40106BC Hex Schmitt Trigger

#### **General Description**

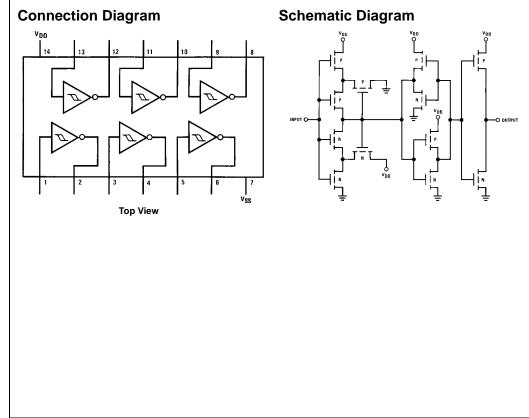
The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V<sub>T+</sub> and V<sub>T-</sub>, show low variation with respect to temperature (typ 0.0005V/°C at V<sub>DD</sub> = 10V), and hysteresis, V<sub>T+</sub> – V<sub>T-</sub>  $\geq$  0.2 V<sub>DD</sub> is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to  $V_{\text{DD}}$  and  $V_{\text{SS}}.$ 

#### Features

■ Wide supply voltage range: 3V to 15V

October 1987


Revised September 2003

- High noise immunity: 0.7 V<sub>DD</sub> (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS ■ Hysteresis: 0.4 V<sub>DD</sub> (typ.),
- 0.2 V<sub>DD</sub> guaranteed
- Equivalent to MM74C14

#### **Ordering Code:**

| Order Number | Package Number | Package Description                                                          |
|--------------|----------------|------------------------------------------------------------------------------|
| CD40106BCM   | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| CD40106BCN   | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.



© 2003 Fairchild Semiconductor Corporation DS005985

CD40106BC

#### Absolute Maximum Ratings(Note 1) (Note 2)

| DC Supply Voltage (V <sub>DD</sub> )        | -0.5 to $+18$ V <sub>DC</sub>                    |
|---------------------------------------------|--------------------------------------------------|
| Input Voltage (V <sub>IN</sub> )            | –0.5 to $\mathrm{V_{DD}}$ +0.5 $\mathrm{V_{DC}}$ |
| Storage Temperature Range (T <sub>S</sub> ) | -65°C to +150°C                                  |
| Power Dissipation (P <sub>D</sub> )         |                                                  |
| Dual-In-Line                                | 700 mW                                           |
| Small Outline                               | 500 mW                                           |
| Lead Temperature (T <sub>L</sub> )          |                                                  |
| (Soldering, 10 seconds)                     | 260°C                                            |

#### Recommended Operating Conditions (Note 2)

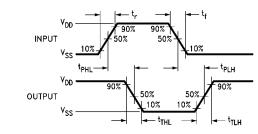
| DC Supply Voltage (V <sub>DD</sub> ) |  |
|--------------------------------------|--|
| Input Voltage (V <sub>IN</sub> )     |  |

3 to 15  $V_{DC}$  0 to  $V_{DD}$   $V_{DC}$ 

Note 2:  $V_{SS} = 0V$  unless otherwise specified.

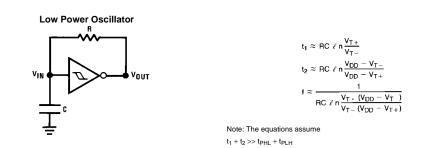
#### DC Electrical Characteristics (Note 3)

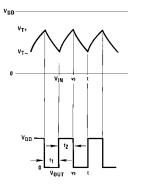
| Symbol          | Parameter                                       | Conditions                                   | -5    | –55°C     |       | +25°C             |      |       | +125°C |       |  |
|-----------------|-------------------------------------------------|----------------------------------------------|-------|-----------|-------|-------------------|------|-------|--------|-------|--|
| Symbol          | Parameter                                       | Conditions                                   | Min   | Min Max I |       | Min Typ Max       |      | Min   | Max    | Units |  |
| I <sub>DD</sub> | Quiescent Device Current                        | $V_{DD} = 5V$                                |       | 1.0       |       |                   | 1.0  |       | 30     |       |  |
|                 |                                                 | $V_{DD} = 10V$                               |       | 2.0       |       |                   | 2.0  |       | 60     | μA    |  |
|                 |                                                 | $V_{DD} = 15V$                               |       | 4.0       |       |                   | 4.0  |       | 120    |       |  |
| 0L              | LOW Level Output                                | I <sub>O</sub>   < 1 μA                      |       | 1         |       |                   |      |       |        | V     |  |
|                 | Voltage                                         | $V_{DD} = 5V$                                |       | 0.05      |       |                   | 0.05 |       | 0.05   |       |  |
|                 |                                                 | $V_{DD} = 10V$                               |       | 0.05      |       |                   | 0.05 |       | 0.05   |       |  |
|                 |                                                 | $V_{DD} = 15V$                               |       | 0.05      |       |                   | 0.05 |       | 0.05   |       |  |
| V <sub>OH</sub> | HIGH Level Output                               | I <sub>O</sub>   < 1 μA                      |       |           |       |                   |      |       |        |       |  |
|                 | Voltage                                         | $V_{DD} = 5V$                                | 4.95  |           | 4.95  | 5                 |      | 4.95  |        | v     |  |
|                 |                                                 | $V_{DD} = 10V$                               | 9.95  |           | 9.95  | 10                |      | 0.95  |        |       |  |
|                 |                                                 | $V_{DD} = 15V$                               | 14.95 |           | 14.95 | 15                |      | 14.95 |        |       |  |
|                 | Negative-Going Threshold                        | $V_{DD} = 5V, V_{O} = 4.5V$                  | 0.7   | 2.0       | 0.7   | 1.4               | 2.0  | 0.7   | 2.0    |       |  |
|                 | Voltage                                         | $V_{DD} = 10V, V_{O} = 9V$                   | 1.4   | 4.0       | 1.4   | 3.2               | 4.0  | 1.4   | 4.0    | V     |  |
|                 |                                                 | $V_{DD} = 15V, V_{O} = 13.5V$                | 2.1   | 6.0       | 2.1   | 5.0               | 6.0  | 2.1   | 6.0    |       |  |
| V <sub>T+</sub> | Positive-Going Threshold                        | $V_{DD} = 5V, V_{O} = 0.5V$                  | 3.0   | 4.3       | 3.0   | 3.6               | 4.3  | 3.0   | 4.3    |       |  |
|                 | Voltage                                         | $V_{DD} = 10V, V_{O} = 1V$                   | 6.0   | 8.6       | 6.0   | 6.8               | 8.6  | 6.0   | 8.6    | V     |  |
|                 |                                                 | $V_{DD} = 15V, V_{O} = 1.5V$                 | 9.0   | 12.9      | 9.0   | 10.0              | 12.9 | 9.0   | 12.9   |       |  |
| V <sub>H</sub>  | Hysteresis (V <sub>T+</sub> – V <sub>T-</sub> ) | $V_{DD} = 5V$                                | 1.0   | 3.6       | 1.0   | 2.2               | 3.6  | 1.0   | 3.6    |       |  |
|                 | Voltage                                         | $V_{DD} = 10V$                               | 2.0   | 7.2       | 2.0   | 3.6               | 7.2  | 2.0   | 7.2    | V     |  |
|                 |                                                 | $V_{DD} = 15V$                               | 3.0   | 10.8      | 3.0   | 5.0               | 10.8 | 3.0   | 10.8   |       |  |
| I <sub>OL</sub> | LOW Level Output                                | $V_{DD} = 5V, V_{O} = 0.4V$                  | 0.64  |           | 0.51  | 0.88              |      | 0.36  |        |       |  |
|                 | Current (Note 3)                                | $V_{DD} = 10V, V_{O} = 0.5V$                 | 1.6   |           | 1.3   | 2.25              |      | 0.9   |        | mA    |  |
|                 |                                                 | $V_{DD} = 15V, V_{O} = 1.5V$                 | 4.2   |           | 3.4   | 8.8               |      | 2.4   |        |       |  |
| I <sub>OH</sub> | HIGH Level Output                               | $V_{DD} = 5V, V_{O} = 4.6V$                  | -0.64 |           | -0.51 | -0.88             |      | -0.36 |        |       |  |
|                 | Current (Note 3)                                | $V_{DD} = 10V, V_{O} = 9.5V$                 | -1.6  |           | -1.3  | -2.25             |      | -0.9  |        | mA    |  |
|                 |                                                 | $V_{DD} = 15V, V_{O} = 13.5V$                | -4.2  |           | -3.4  | -8.8              |      | -2.4  |        |       |  |
| I <sub>IN</sub> | Input Current                                   | $V_{DD} = 15V, V_{IN} = 0V$                  |       | -0.1      |       | -10 <sup>-5</sup> | -0.1 |       | -1.0   | μA    |  |
|                 |                                                 | V <sub>DD</sub> = 15V, V <sub>IN</sub> = 15V |       | 0.1       |       | 10 <sup>-5</sup>  | 0.1  |       | 1.0    | μΑ    |  |


Note 3:  $I_{OH}$  and  $I_{OL}$  are tested one output at a time.

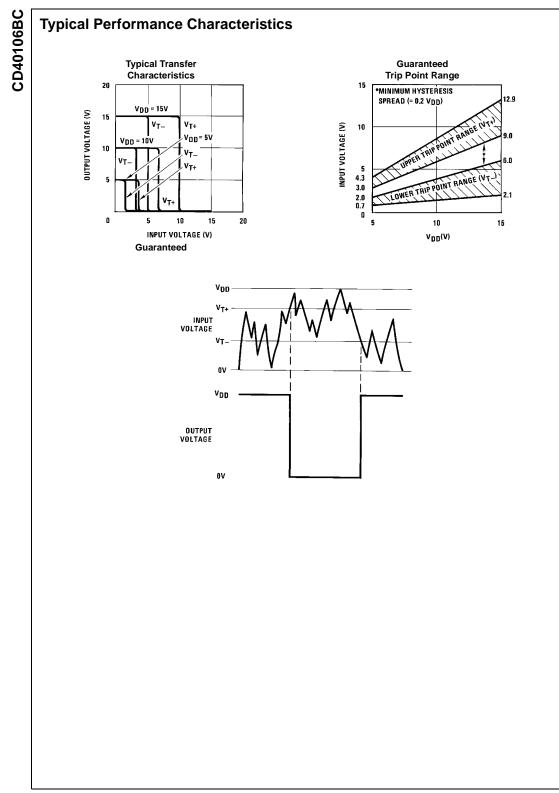
| <b>AC Electrical Characteristics</b> (Note 4)<br>$T_A = 25^{\circ}C, C_I = 50 \text{ pF}, R_I = 200 \text{k}, t_r \text{ and } t_f = 20 \text{ ns}, unless otherwise specified}$ |                             |                   |     |     |     |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-----|-----|-----|-------|--|
| Symbol                                                                                                                                                                           | Parameter                   | Conditions        | Min | Тур | Max | Units |  |
| t <sub>PHL</sub> or t <sub>PLH</sub>                                                                                                                                             | Propagation Delay Time from | $V_{DD} = 5V$     |     | 220 | 400 |       |  |
|                                                                                                                                                                                  | Input to Output             | $V_{DD} = 10V$    |     | 80  | 200 | ns    |  |
|                                                                                                                                                                                  |                             | $V_{DD} = 15V$    |     | 70  | 160 |       |  |
| t <sub>THL</sub> or t <sub>TLH</sub>                                                                                                                                             | Transition Time             | $V_{DD} = 5V$     |     | 100 | 200 |       |  |
|                                                                                                                                                                                  |                             | $V_{DD} = 10V$    |     | 50  | 100 | ns    |  |
|                                                                                                                                                                                  |                             | $V_{DD} = 15V$    |     | 40  | 80  |       |  |
| C <sub>IN</sub>                                                                                                                                                                  | Average Input Capacitance   | Any Input         |     | 5   | 7.5 | pF    |  |
| C <sub>PD</sub>                                                                                                                                                                  | Power Dissipation Capacity  | Any Gate (Note 5) |     | 14  |     | pF    |  |

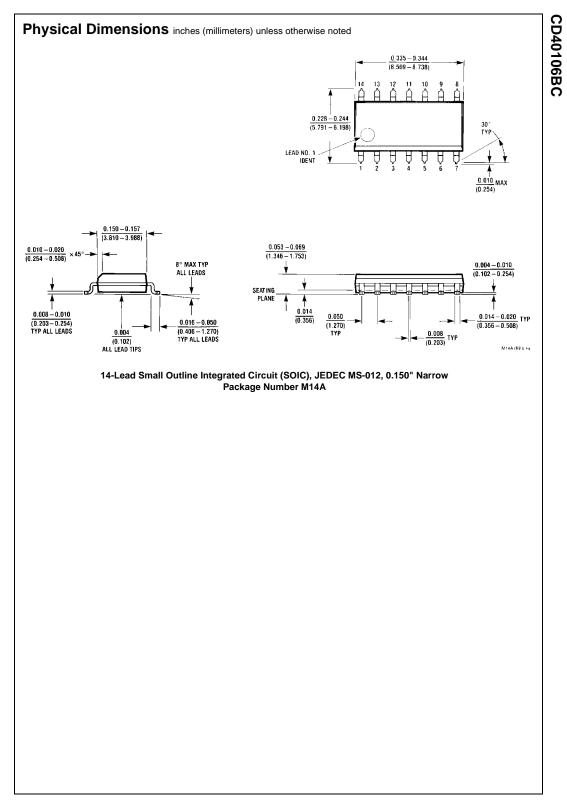
Note 4: AC Parameters are guaranteed by DC correlated testing.

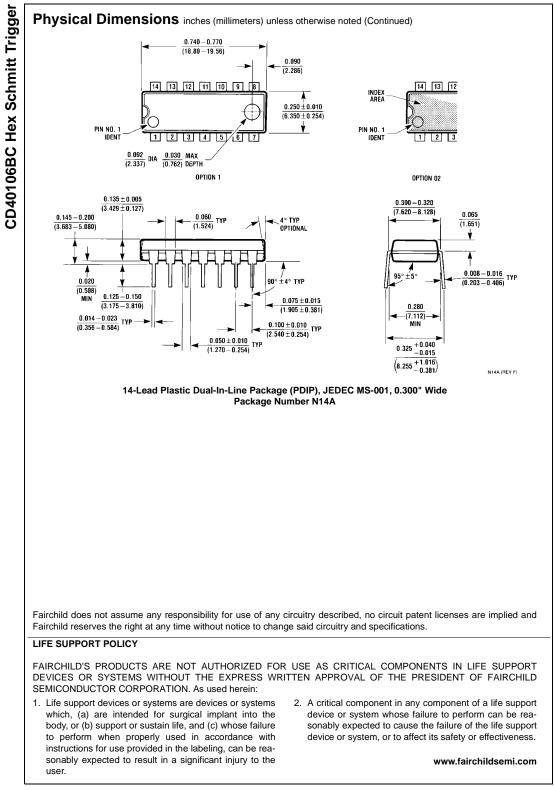

Note 5: C<sub>PD</sub> determines the no load ac power consumption of any CMOS device. For complete explanation see 74C Family Characteristics Application Note, AN-90.


#### Switching Time Waveforms




 $t_{\rm r}=t_{\rm f}=20~{\rm ns}$ 


#### **Typical Applications**






3







ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.