Dual 1-of-4 Decoder/Demultiplexer

The MC74AC139/74ACT139 is a high-speed, dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually-exclusive active-LOW outputs. Each decoder has an active-LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the MC74AC139/74ACT139 can be used as a function generator providing four minterms of two variables.

- Multifunctional Capability
- Two Completely Independent 1-of-4 Decoders
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA
- 'ACT139 Has TTL Compatible Inputs
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

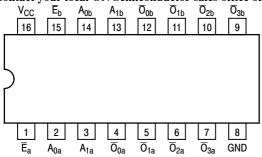


Figure 1. Pinout: 16–Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
A ₀ , A ₁	Address Inputs
Ē	Enable Inputs
$\overline{O}_0 - \overline{O}_3$	Outputs

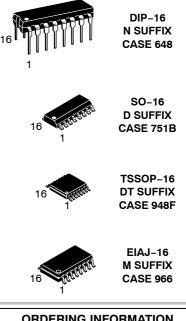
TRUTH TABLE

Inputs			Outputs			
Ē	A ₀	A ₁	\overline{O}_0	\overline{O}_1	\overline{O}_2	\overline{O}_3
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	н	Н	Н
L	Н	L	н	L	Н	Н
L	L	н	н	н	L	Н
L	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial



March, 2006 – Rev. 7

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION							
Device	Package	Shipping					
MC74AC139N	PDIP-16	25 Units/Rail					
MC74ACT139N	PDIP-16	25 Units/Rail					
MC74AC139D	SOIC-16	48 Units/Rail					
MC74ACT139D	SOIC-16	48 Units/Rail					
MC74AC139DR2	SOIC-16	2500 Tape & Reel					
MC74ACT139DR2	SOIC-16	2500 Tape & Reel					
MC74AC139DT	TSSOP-16	96 Units/Rail					
MC74ACT139DT	TSSOP-16	96 Units/Rail					
MC74AC139DTR2	TSSOP-16	2500 Tape & Reel					
MC74AC139M	EIAJ-16	50 Units/Rail					
MC74ACT139M	EIAJ-16	50 Units/Rail					
MC74AC139MEL	EIAJ-16	2000 Tape & Reel					
MC74ACT139MEL	EIAJ-16	2000 Tape & Reel					

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

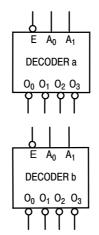
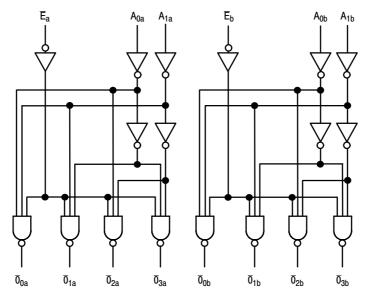
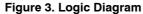




Figure 2. Logic Symbol

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FUNCTIONAL DESCRIPTION

The MC74AC139/74ACT139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs (A_0 - A_1) and provides four mutually exclusive active-LOW outputs (\overline{O}_0 - \overline{O}_3). Each decoder has an active-LOW enable (\overline{E}). When \overline{E} is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the MC74AC139/74ACT139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure 4, and thereby reducing the number of packages required in a logic network.

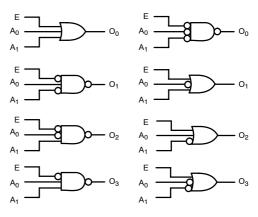


Figure 4. Gate Functions (Each Half)

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	–0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V_{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recom-mended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
		'AC	2.0	5.0	6.0	
V _{CC}	V _{CC} Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	1
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	ns/V
t _r , t _f	'ACT Devices except Schmitt Inputs	$V_{CC} @ 5.5 V$	-	8.0	-	115/ V
TJ	Junction Temperature (PDIP)		-	-	140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		_	-	24	mA

1. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
		V _{cc}	T _A = +25°C		T _A = –40°C to +85°C		
Symbol	Parameter	(V)	Тур	Guar	anteed Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	v	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	v	$\label{eq:VIN} \begin{array}{c} {}^{*}V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ -12 \mbox{ mA} \\ I_{OH} \mbox{ -24 mA} \\ -24 \mbox{ mA} \end{array}$
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA
		3.0 4.5 5.5	- -	0.36 0.36 0.36	0.44 0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}$, GND
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

				74AC		74	AC		
		v _{cc} *	T, C	_A = +25° C _L = 50 p	C F	T _A = - to +8 C _L = 5			Fig.
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Unit	No.
t _{PLH}	Propagation Delay A_n to \overline{O}_n	3.3 5.0	4.0 3.0	8.0 6.5	11.5 8.5	3.5 2.5	13 9.5	ns	3–6
t _{PHL}	Propagation Delay A_n to \overline{O}_n	3.3 5.0	3.0 2.5	7.0 5.5	10 7.5	2.5 2.0	11 8.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to \overline{O}_n	3.3 5.0	4.5 3.5	9.5 7.0	12 8.5	3.5 3.0	13 10	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to \overline{O}_n	3.3 5.0	4.0 2.5	8.0 6.0	10 7.5	3.0 2.5	11 8.5	ns	3–6

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	СТ	74ACT		
		V _{cc}	T _A = +25°C		T _A = –40°C to +85°C		
Symbol	Parameter	(V)	Тур	Guar	anteed Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	v	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

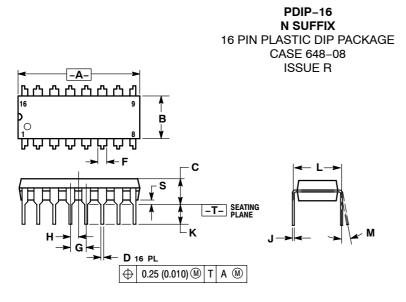
AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74ACT		744	СТ		
		V _{cc} *	Т,C	д = +25° °L = 50 р	C F	T _A = - to +8 C _L = \$	35°C		Fig.
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Unit	No.
t _{PLH}	Propagation Delay A_n to \overline{O}_n	5.0	1.5	6.0	8.5	1.5	9.5	ns	3–6
t _{PHL}	Propagation Delay A_n to \overline{O}_n	5.0	1.5	6.0	9.5	1.5	10.5	ns	3–6
t _{PLH}	Propagation Delay $\overline{E}_n \text{ to } \overline{O}_n$	5.0	2.5	7.0	10.0	2.0	11.0	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to \overline{O}_n	5.0	2.0	7.0	9.5	1.5	10.5	ns	3–6

*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	40	pF	V _{CC} = 5.0 V


MARKING DIAGRAMS

DIP-16	SO-16	TSSOP-16	EIAJ-16
ውስስስስስስስ MC74AC139N AWLYYWW ወወወወወወወ	ΠΠΠΠΠ ΠΠΠΠΠ AC139	AAAAAAA AC 139 ALYW HHHHHHH	ORDERED 74AC139 ALYW UUUUUUUU
AGAAAAAA MC74ACT139N 。 AWLYYWW 。 ଫଟଟଟଟଟ	ΠΠΠΠΠ ΑСТ139 _ ΑСТ139 _ ΑWLYWW UUUUUUUUU UUUUUUU	AAAAAAAA ACT 139 o Alyw HHHHHHH	74ACT139 ALYW

A = Assembly Location WL, L = Wafer Lot YY, Y = Year

WW, W = Work Week

PACKAGE DIMENSIONS

4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MILLIMETERS DIM MIN MAX MIN MAX
 A
 0.740
 0.770
 18.80
 19.55

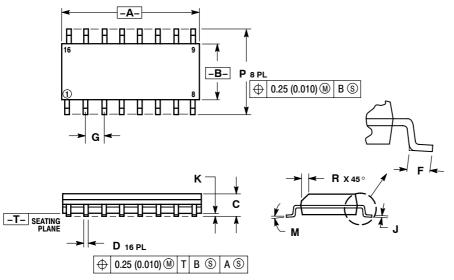
 B
 0.250
 0.270
 6.35
 6.85

 C
 0.145
 0.175

 D
 0.015
 0.021
 4.44 3.69 0.39 0.53 F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC Η 0.050 BSC 1.27 BSC J 0.008 0.015 K 0.110 0.130 0.21 0.38 2.80 3.30 L 0.295 0.305 7.50 7.74 Μ 0 10 ' 0 10 ° S 0.020 0.040 0.51 1.01

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

DIMENSION L TO CENTER OF LEADS WHEN

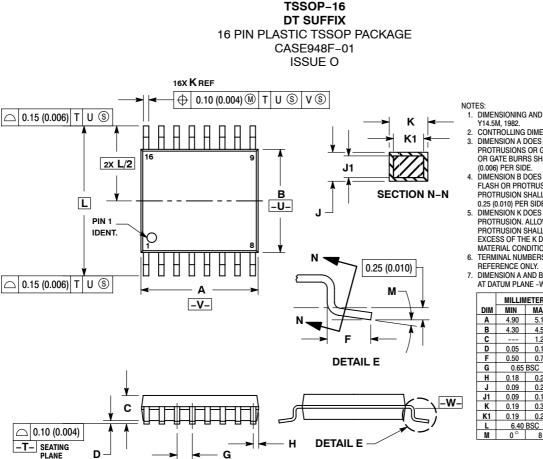

Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

FORMED PARALLEL.

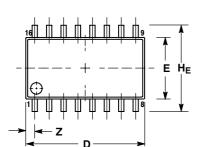
2

3.

SO-16 **D SUFFIX** 16 PIN PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

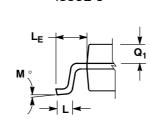


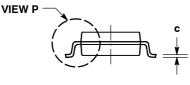
NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
Μ	0 °	7°	0 °	7°
Ρ	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS


EIAJ-16 **M SUFFIX** 16 PIN PLASTIC EIAJ PACKAGE CASE966-01 **ISSUE O**


Δ1

 \cap

0.10 (0.004)

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH
- PHOTHUSIONS ON GATE BUHRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
- 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
ĸ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0°	8°	0°	8°

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE. 4.

TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE 5. DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
p	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
Ē	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q1	0.70	0.90	0.028	0.035
Ζ		0.78		0.031

е

b

 \oplus

0.13 (0.005) 🕅

<u>Notes</u>

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers and reasonable attorney fees and is not for seale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.