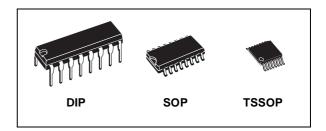


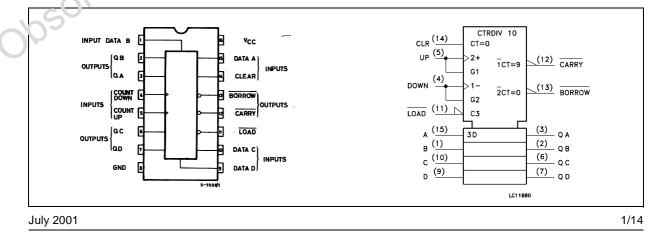
SYNCHRONOUS UP/DOWN DECADE COUNTER

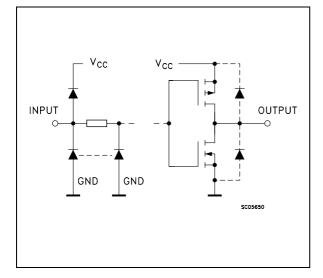

- HIGH SPEED :
- f_{MAX} = 55 MHz (TYP.) at V_{CC} = 6V ■ LOW POWER DISSIPATION:
- $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- HIGH NOISE IMMUNITY:
 V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 192

DESCRIPTION

The M74HC192 is an high speed CMOS SYNCRONOUS UP/DOWN DECADE COUNTERS fabricated with silicon gate C²MOS technology.

The counter has two separate clock inputs, an UP COUNT input and a DOWN COUNT input. All outputs of the flip-flop are simultaneously triggered on the low to high transition of either clock while the other input is held high. The direction of counting is determined by which nput is clocked. This counter may be prose; by entering the desired data on the DATA A, <u>CATA B</u>, DATA C, and DATA D input. When the LOAD input is taken low the data is loated independently of either clock input. This toature allows the counters to be used as divide-by-n counters by modifying the count ler, giv with the preset inputs. In addition


PIN CONNECTION AND IEC LOGIC SYMBOLS

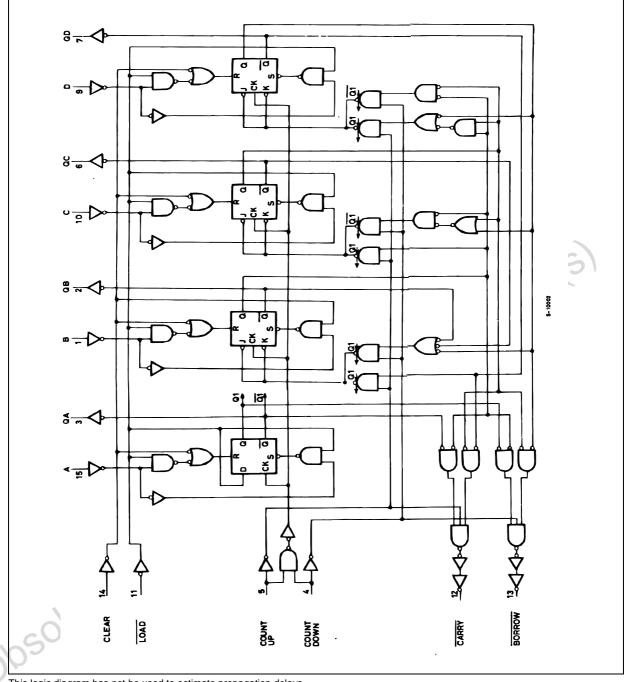

ORDER CODES

PACKAGE	TUBE	1 & R
DIP	M74HC192B1R	. C
SOP	M74HC192M1R	17.HC192RM13TR
TSSOP	0	M74HC192TTR

the counter can also be cleared. This is accomplished by inputting a high on the CLEAR input. All 4 internal stages are set to low independently of either COUNT input. Both a **BCRROW** and **CARRY** output are provided to anable cascading of both up and down counting functions. The BORROW output produces a negative going pulse when the counter underflows and the CARRY outputs a pulse when the counters overflows. The counter can be cascaded by connection the CARRY and BORROW outputs of one device to the COUNT UP and COUNT DOWN inputs, respectively, of the next device. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

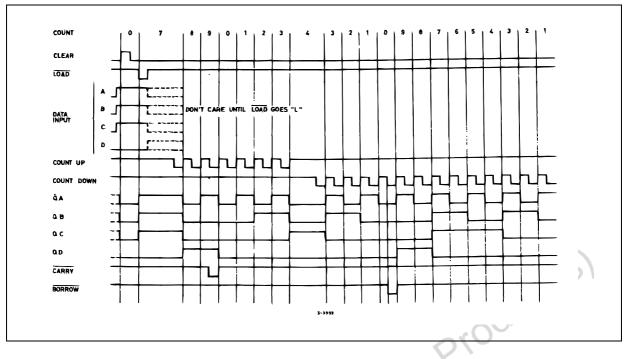
PIN DESCRIPTION


PIN No	SYMBOL	NAME AND FUNCTION
3, 2, 6, 7	QA to QD	Flip-Flop Outputs
4	COUNT DOWN	Count Down Clock Input
5	COUNT UP	Count Up Clock Input
11	LOAD	Asynchronous Parallel Load Input (Active LOW)
12	CARRY	Count Up (Carry) Output (Active LOW)
13	BORROW	Count Down (Borrow) Output (Active LOW)
14	CLEAR	Asynchronous Reset Input (Active High)
15, 1, 10, 9	A to D	Data Inputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage
		, otler

57

TRUTH TABLE

COUNT UP	COUNT DOWN	LOAD	CLEAR	FUNCTION
	Н	Н	L	COUNT UP
	Н	Н	L	NO COUNT
Н		н	L	COUNT DOWN
Н		Н	-0	NO COUNT
Х	Х	L	NOT	PRESET
Х	Х	Х	Н	RESET
obsolet	eprodu			


LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 25	mA
_{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
PD	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied (*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	$V_{CC} = 2.0V$	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

57

4/14

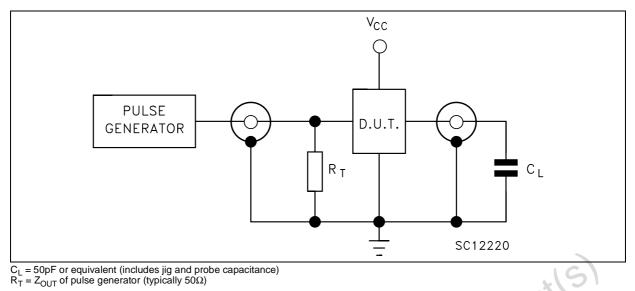
DC SPECIFICATIONS

		1	Test Condition				Value				
Symbol	Parameter	v _{cc}		т	A = 25°	С	-40 to	85°C	-55 to	125°C	Uni
		(Ŭ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
VIH	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH}	High Level Output Voltage	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μΑ		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1	ΛĈ	0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1	\mathcal{V}	0.1	١
			I _O =4.0 mA								
		6.0	I _O =5.2 mA		0.18		\mathbf{Q}	0.33		0.40	
I	Input Leakage Current	6.0	$V_{I} = V_{CC} \text{ or } GND$			±0.1		± 1		± 1	μ
I _{CC}	Quiescent Supply Current	6.0	$V_{I} = V_{CC} \text{ or } GND$	C	0/	4		40		80	μ
	Current Quiescent Supply Current	6.0 6.0	$I_0=5.2 \text{ mA}$ $V_1 = V_{CC} \text{ or GND}$	05	0.17 0.18		Q ^r	± 1		± 1	_

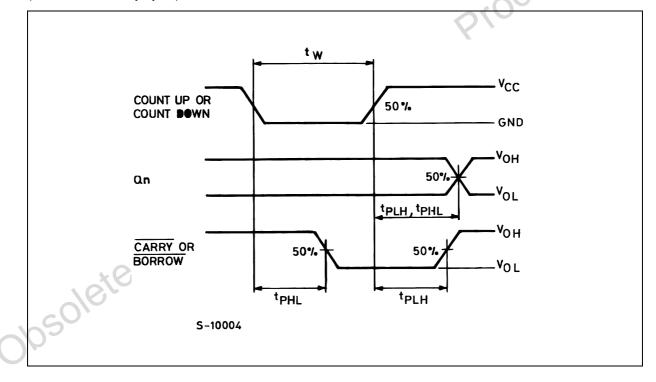
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input $t_r = t_f = 6ns$)

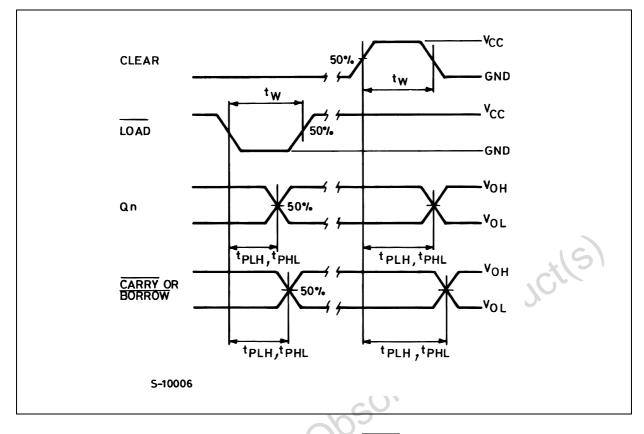
		ר	Test Condition				Value				
Symbol	Parameter	v _{cc}		т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(Ŭ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			65	190		240		285	
	Time (COUNT UP,	4.5			20	38		48		57	ns
	DOWN - Q)	6.0			16	32		41		48	
t _{PLH} t _{PHL}	Propagation Delay	2.0			40	130		165		195	
	Time (COUNT UP -	4.5			13	26		33		39	ns
	CARRY)	6.0			11	22		28		33	
t _{PLH} t _{PHL}	Propagation Delay	2.0			40	130		165		195	
	Time	4.5			13	26		33		39	ns
	(COUNT DOWN - BORROW)	6.0			11	22		28		33	
t _{PLH} t _{PHL}	Propagation Delay	2.0			85	220		275	Ċ	330	-
FLN FNL	Time (LOAD - Q)	4.5			25	44		55		66	ns
		6.0			20	37		47		56	
t _{PLH} t _{PHL}	Propagation Delay	2.0		1	110	250	~	315		375	
PLH PHL	Time (LOAD -	4.5			30	50	\sim	63		75	ns
	CARRY)	6.0			25	43		54		64	110
t _{PLH} t _{PHL}	Propagation Delay	2.0			110	250		315		375	
PLH PHL	Time (LOAD -	4.5			31	50		63		75	ns
	BORROW)	6.0		C	25	43		54	1	64	
t _{PLH} t _{PHL}	Propagation Delay	2.0		10 -	80	190		240	1	285	
PLR PRL	Time (DATA - Q)	4.5			25	38		48	1	57	ns
		6.0			20	32		41	1	48	
t _{PLH} t _{PHL}	Propagation Delay	2.0	16	1	120	250		315	1	375	
PLH PHL	Time (DATA -	4.5	*(2)		34	50		63	ł – –	75	ns
	CARRY)	6.0			28	43		54	1	64	
t _{PLH} t _{PHL}	Propagation Delay	2.0			110	250		315	ł – –	375	
PLA PAL	Time (DATA -	4.5			30	50		63	1	75	ns
	BORROW)	6.0			25	43		54		64	
touu	Propagation Delay	2.0		1	100	225		280	1	340	
t _{PHL}	Time (CLEAR -Q)	4.5			30	45		56		68	ns
	6	6.0			25	38		48		58	
t _{PLH}	Propagation Delay	2.0			120	250		315		375	
TPLH	Time (CLEAR	4.5			35	50		63		75	ns
	-CARRY)	6.0			29	43		54		64	110
t _{PHL}	Propagation Delay	2.0			120	250		315		375	
YHL	Time (CLEAR -	4.5			35	50		63		75	ns
	BORROW)	6.0			29	43		54		64	113
fuer	Maximum Clock	2.0		5	12		4	7	3.4		
f _{MAX}	Frequency	4.5		25	48		20		17		MH
		6.0		30	40 55		20		20		1711.1

		Test Condi	tion				Value				
Symbol	Parameter	v _{cc}		T,	Γ _A = 25°C -40 to			85°C	-55 to	125°C	Unit
		(V)	м	lin.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{W(H)}	Minimum Pulse	2.0			34	100		125		150	
t _{W(L)}	Width (COUNT UP/	4.5			9	20		25		30	ns
	DOWN)	6.0			7	17		21		26	
t _{W(L)}	Minimu <u>m Pul</u> se	2.0			34	75		95		110	
	Width (LOAD)	4.5			9	15		19		22	ns
		6.0			7	13		16		19	
t _{W(H)}	Minimum Pulse	2.0			40	100		125		150	
()	Width (CLEAR)	4.5			12	20		25		30	ns
		6.0			10	17		21		26	
t _s	Minimum Set-up	2.0			30	75		95		110	
	Time(DATA -LOAD)	4.5			9	15		19		22	ns
		6.0			7	13		16		19	
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0	~	0	ns
		6.0				0		0		0	
t _{REM}	Minim <u>um Re</u> moval	2.0			6	50		65	5	75	
	Time (LOAD)	4.5			2	10		13	4	15	ns
		6.0			2	9	O N	11		13	
t _{REM}	Minimum Removal	2.0			14	50		65		75	
	Time (CLEAR)	4.5			4	10		13		15	ns
		6.0			3	9		11		13	

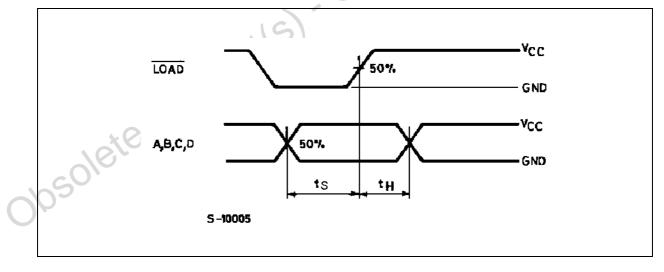

CAPACITIVE CHARACTERISTICS

		6.0			3	9		11		13	
CAPACI	TIVE CHARACTER	RISTIC	s	10 ⁻²	<i>.</i> ,						
		٦	Test Condition				Value				
Symbol	Symbol Parameter			T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		V _{CC} (V)	131	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			68						pF


1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$ Obsole

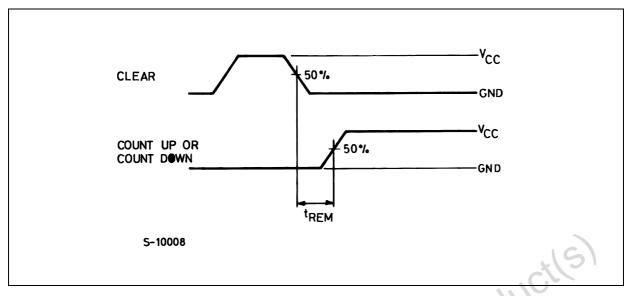

TEST CIRCUIT

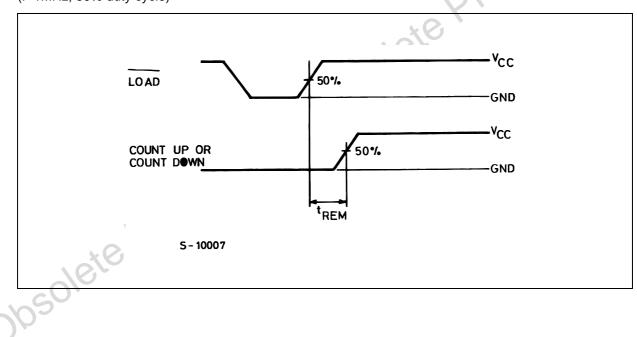
WAVEFORM 1 : PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (COUNT UP AND DOWN) (f=1MHz; 50% duty cycle)



57

WAVEFORM 2 : PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (CLEAR, LOAD) (f=1MHz; 50% duty cycle)

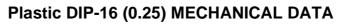

WAVEFORM 3 : SETUP AND HOLD TIME (A, B, C, D to LOAD) (f=1MHz; 50% duty cycle)

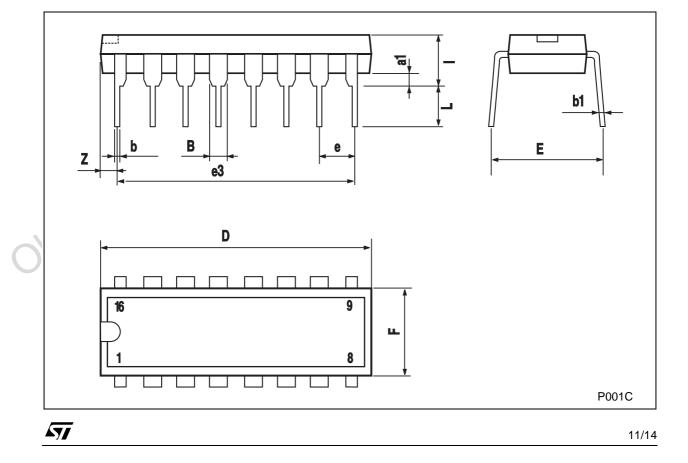

57

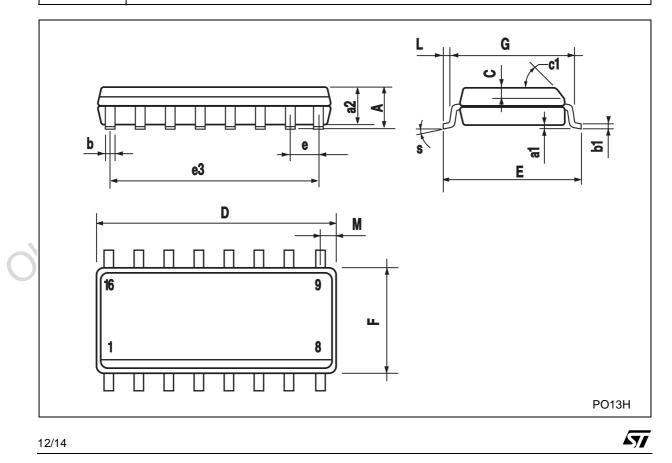
WAVEFORM 4: MINIMUM REMOVAL TIME (COUNT UP OR DOWN TO CLEAR)

(f=1MHz; 50% duty cycle)

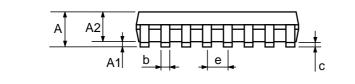
WAVEFORM 5 : MINIMUM REMOVAL TIME (COUNT UP OR DOWN TO LOAD)

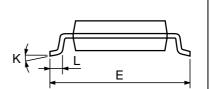


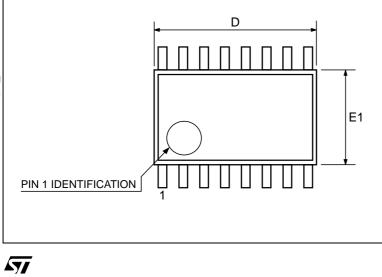

(f=1MHz; 50% duty cycle)



DIM.		mm.		inch					
Dini:	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78			0.700				
F			7.1			0.280			
I			5.1			0.201			
L		3.3			0.130				


	SO-16 MECHANICAL DATA											
DIM		mm.			inch							
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.						
А			1.75			0.068						
a1	0.1		0.2	0.003		0.007						
a2			1.65			0.064						
b	0.35		0.46	0.013		0.018						
b1	0.19		0.25	0.007		0.010						
С		0.5			0.019							
c1		ł	45°	(typ.)		•						
D	9.8		10	0.385		0.393						
E	5.8		6.2	0.228		0.244						
е		1.27			0.050							
e3		8.89			0.350							
F	3.8		4.0	0.149		0.157						
G	4.6		5.3	0.181		0.208						
L	0.5		1.27	0.019		0.050						
М			0.62			0.024						
S		<u> </u>	8° (r	nax.)	•	+						




MECHANICAL <u>а т а</u> . -

DIM.		mm.		inch					
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			1.2			0.047			
A1	0.05		0.15	0.002	0.004	0.006			
A2	0.8	1	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.0089			
D	4.9	5	5.1	0.193	0.197	0.201			
E	6.2	6.4	6.6	0.244	0.252	0.260			
E1	4.3	4.4	4.48	0.169	0.173	0.176			
е		0.65 BSC			0.0256 BSC				
К	0°		8°	0°		8°			
L	0.45	0.60	0.75	0.018	0.024	0.030			

TSSOP16 MECHANICAL DATA

0080338D

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without express without express without express without expressed in formation proval of STMicroelectronics. The publication are subject to change without express without express without expressed in formation previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without expressed microelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

57

14/14