M54HC4053

RAD-HARD TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}\left(\mathrm{MAX}\right.$.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOGIC LEVEL TRANSLATION TO ENABLE 5V LOGIC SIGNAL TO COMMUNICATE WITH $\pm 5 \mathrm{~V}$ ANALOG SIGNAL
- LOW "ON" RESISTANCE:
70Ω TYP. (VCC $-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$)
50Ω TYP. ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}$)
- WIDE ANALOG INPUT VOLT. RANGE: $\pm 6 \mathrm{~V}$
- FAST SWITCHING:
$\mathrm{t}_{\mathrm{pd}}=15$ ns (TYP.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW CROSSTALK BETWEEN SWITCHES
- HIGH ON/OFF OUTPUT VOLTAGE RATIO
- WIDE OPERATING SUPPLY VOLTAGE RANGE $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2 \mathrm{~V}$ TO 12V
- LOW SINE WAVE DISTORTION: 0.02% at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}$
- HIGH NOISE IMMUNITY:
$\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$ (MIN.)
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 4053
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9408-065

DESCRIPTION

The M54HC4053 is a triple two-channel analog MULTIPLEXER/DEMULTIPLEXER fabricated

DILC-16

FPC-16

ORDER CODES

PACKAGE	FM	EM
DILC	M54HC4053D	M54HC4053D1
FPC	M54HC4053K	M54HC4053K1

with silicon gate C^{2} MOS technology and it is pin to pin compatible with the equivalent metal gate CMOS4000B series.
It contains 6 bidirectional and digitally controlled analog switches.
A built-in level shifting is included to allow an input range up to $\pm 6 \mathrm{~V}$ (peak) for an analog signal with digital control signal of 0 to 6 V .
$V_{\text {EE }}$ supply pin is provided for analog input signals. It has an inhibit (INH) input terminal to disable all the switches when high. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND.
A, B and C control inputs select one of a pair of channels.
All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION

Figure 1: IEC Logic Symbols

Figure 2: Control Input Equivalent Circuit

Figure 3: I/O Equivalent Circuit

Table 1: Pin Description

PIN N ${ }^{\circ}$	SYMBOL	NAME AND FUNCTION
2,1	bx, by	Independent Input Out- puts
5,3	cx, cy	Independent Input Out- puts
6	INH	INHIBIT Input
7	$\mathrm{~V}_{\mathrm{EE}}$	Negative Supply Voltage
$11,10,9$	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$	Select Inputs
12,13	ax, ay	Independent Input Out- puts
$14,15,4$	ax to cy	Common Output/Input
8	GND	Ground (0V)
16	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply Voltage

Table 2: Truth Table

INPUT STATE		ON CHANNEL
INH	A or B or C	
L	L	ax or bx or cx
L	H	ay or by or cy
H	X	NONE

X: Don't care

Figure 4: Functional Diagram

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage	-0.5 to +13	V
$\mathrm{~V}_{\mathrm{I}}$	Control Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Switch I/O Voltage	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{CK}	Control Input Diode Current	± 20	mA
$\mathrm{I}_{\mathrm{IOK}}$	I^{\prime} O Diode Current	± 20	mA
I_{T}	Switch Through Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	300	mW
$\mathrm{~T}_{\mathrm{Stg}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	265	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 4: Recommended Operating Conditions

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
$V_{\text {EE }}$	Supply Voltage		-6 to 0	V
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$	Supply Voltage		2 to 12	V
V_{1}	Input Voltage		0 to V_{CC}	V
$V_{1 / 0}$	I/O Voltage		$\mathrm{V}_{\text {EE }}$ to V_{CC}	V
$\mathrm{T}_{\text {op }}$	Operating Temperature		-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0 to 1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0 to 500	
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0 to 400	

Table 5: DC Specifications

Symbol	Parameter	Test Condition			Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{IHC}}$	High Level Input Voltage	2.0			1.5			1.5		1.5		V
		4.5			3.15			3.15		3.15		
		6.0			4.2			4.2		4.2		
$\mathrm{V}_{\text {ILC }}$	Low Level Input Voltage	2.0					0.5		0.5		0.5	V
		4.5					1.35		1.35		1.35	
		6.0					1.8		1.8		1.8	
R_{ON}	ON Resistance	4.5	GND	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 2 \mathrm{~mA} \end{gathered}$		85	180		225		270	Ω
		4.5	-4.5			55	120		150		180	
		6.0	-6.0			50	100		125		150	
		2.0	GND	$\begin{gathered} V_{I}=V_{I H C} \text { or } V_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 2 \mathrm{~mA} \end{gathered}$		150						
		4.5	GND			70	150		190		230	
		4.5	-4.5			50	100		125		150	
		6.0	-6.0			45	80		100		120	
$\Delta \mathrm{R}_{\mathrm{ON}}$	Difference of ON Resistance between switches	4.5	GND	$\begin{gathered} \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 2 \mathrm{~mA} \\ \hline \end{gathered}$		10	30		35		45	Ω
		4.5	-4.5			5	12		15		18	
		6.0	-6.0			5	10		12		15	
IOFF	Input/Output Leakage Current (SWITCH OFF)	6.0	GND	$\begin{gathered} \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \\ \mathrm{V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ILC}} \text { or } \mathrm{V}_{\mathrm{IHC}} \end{gathered}$			± 0.06		± 0.6		± 1.2	$\mu \mathrm{A}$
		6.0	-6.0				± 0.1		± 1		± 2	
$I_{\text {IZ }}$	Switch Input Leakage Current (SWITCH ON, OUTPUT OPEN)	6.0	GND	$\begin{gathered} \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \end{gathered}$			± 0.06		± 0.6		± 1.2	$\mu \mathrm{A}$
		6.0	-6.0				± 0.1		± 1		± 2	
1	Input Leakage Current	6.0	GND	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 0.1		± 0.1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	6.0	GND	$V_{1}=V_{C C}$ or GND			4		40		80	$\mu \mathrm{A}$
		6.0	-6.0				8		80		160	

Table 6: AC Electrical Characteristics $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition			Value							Unit
		V_{cc} (V)	$\begin{aligned} & V_{E E} \\ & (V) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\Phi_{\text {/O }}$	Phase Difference Between Input and Output	2.0	GND			25	60		75		90	ns
		4.5	GND			6	12		15		18	
		6.0	GND			5	10		13		15	
		4.5	-4.5			4						
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	2.0	GND	$R_{L}=1 \mathrm{~K} \Omega$		50	225		280		340	ns
		4.5	GND			14	45		56		68	
		6.0	GND			12	38		48		58	
		4.5	-4.5			14						
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	2.0	GND	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$		95	225		280		340	ns
		4.5	GND			30	45		56		68	
		6.0	GND			26	38		48		58	
		4.5	-4.5			26						

Table 7: Capacitive Characteristics

Symbol	Parameter	Test Condition			Value							Unit
		$\begin{aligned} & V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0				5	10		10		10	pF
$\mathrm{C}_{\text {I/O }}$	Common Terminal Capacitance	5.0	-5.0			11	20		20		20	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Switch Terminal Capacitance	5.0	-5.0			7	15		15		15	pF
$\mathrm{ClOS}^{\text {I }}$	Feed Through Capacitance	5.0	-5.0			0.75	2		2		2	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0	GND			67						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C}$

Table 8: Analog Switch Characteristics (GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

(*) Input COMMON Terminal, and measured at SWITCH Terminal
${ }^{* *}$) Input SWITCH Terminal, and measured at common Terminal
NOTE: These characteristics are determined by the design of the device.

Figure 5: Switching Characteristics Test Circuit

Figure 6: Switching Characteristics Waveform

Figure 7: Channel Resistance (R_{ON})

Figure 8: I_{CC} (Opr.)

DILC-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.1		2.71	0.083		0.107
a1	3.00		3.70	0.118		0.146
a2	0.63	0.88	1.14	0.025	0.035	0.045
B	1.82		2.39	0.072		0.094
b	0.40	0.45	0.50	0.016	0.018	0.020
b1	0.20	0.254	0.30	0.008	0.010	0.012
D	20.06	20.32	20.58	0.790	0.800	0.810
E	7.36	7.62	7.87	0.290	0.300	0.310
e		2.54			0.100	
e1	17.65	17.78	17.90	0.695	0.700	0.705
e2	7.62	7.87	8.12	0.300	0.310	0.320
F	7.29	7.49	7.70	0.287	0.295	0.303
I			3.83			0.151
K	10.90		12.1	0.429		0.476
L	1.14		1.5	0.045		0.059

FPC-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	6.75	6.91	7.06	0.266	0.272	0.278
B	9.76	9.94	10.14	0.384	0.392	0.399
C	1.49		1.95	0.059		0.077
D	0.102	0.127	0.152	0.004	0.005	0.006
E	8.76	8.89	9.01	0.345	0.350	0.355
F		1.27			0.050	
G	0.38	0.43	0.48	0.015	0.017	0.019
H	6.0			0.237		
L	18.75		22.0	0.738		0.867
M	0.33	0.38	0.43	0.013	0.015	0.017
N		4.31			0.170	

Table 9: Revision History

Date	Revision	Description of Changes
15-May-2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

