ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Octal Buffer/Line Driver with 3-State Outputs

The MC74ACT241 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

Features

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- TTL Compatible Inputs
- These are Pb-Free Devices

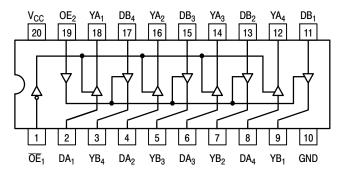


Figure 1. Pinout: 20-Lead Packages Conductors
(Top View)

TRUTH TABLE

Inputs		Outputs			
OE ₁	D	(Pins 12, 14, 16, 18)			
L	L	L			
L	Н	Н			
Н	Х	Z			

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

TRUTH TABLE

Inputs		Outputs
OE ₂	D	(Pins 3, 5, 7, 9)
Н	L	L
Н	Н	Н
L	Х	Z

H = HIGH Voltage Level

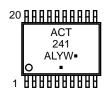
L = LOW Voltage Level

X = Immaterial

Z = High Impedance

ON Semiconductor®

www.onsemi.com


SOIC-20W DW SUFFIX CASE 751D

ACT241 AWLYYWWG O

TSSOP-20 DT SUFFIX CASE 948E

= Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND) (Note 1)	-0.5 to V _{CC} +0.5	V
I _{IK}	DC Input Diode Current	±20	mA
I _{OK}	DC Output Diode Current	±50	mA
I _{OUT}	DC Output Sink/Source Current	±50	mA
I _{CC}	DC Supply Current, per Output Pin	±50	mA
I _{GND}	DC Ground Current, per Output Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead temperature, 1 mm from Case for 10 Seconds	260	°C
T_J	Junction Temperature Under Bias	140	°C
$\theta_{\sf JA}$		SOIC 65.8 SOP 110.7	°C/W
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 30% –	35% UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Model (No Machine Model (No Charged Device Model (No	te 4) > 200	V
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 85°C (No	te 6) ±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_{OUT} absolute maximum rating must be observed.
- The package thermal impedance is calculated in accordance with JESD 51–7.
- 3. Tested to EIA/JESD22-A114-A.
- 4. Tested to EIA/JESD22-A115-A.
- Tested to JESD22-C101-A.
- 6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	DC Input Voltage (Referenced to GND)	4.5		5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0		V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	25	+85	°C
t _r , t _f	Input Rise and Fall Time (Note 8) $ V_{CC} = 4.5 $ $ V_{CC} = 5.5 $	V 0 V 0	10 8.0	10 8.0	ns/V
I _{OH}	Output Current – High	_	_	-24	mA
I _{OL}	Output Current – Low	_	_	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- 7. Unused Inputs may not be left open. All inputs must be tied to a high voltage level or low logic voltage level.
 8. V_{in} from 0.8 V to 2.0 V; refer to individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

		V	T _A = -	+25°C	$T_A = -40^{\circ}C$ to +85°C		
Symbol	Parameter	V _{CC} (V)	Тур	Gı	uaranteed Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V V	I _{OUT} = -50 μA
		4.5 5.5	-	3.86 4.86	3.76 4.76	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH} -24 \text{ mA}$ $^{I}OH -24 \text{ mA}$
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V V	I _{OUT} = 50 μA
		4.5 5.5	-	0.36 0.36	0.44 0.44	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA 1O_L 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
ΔI_{CCT}	Additional Maximum I _{CC} /Input	5.5	0.6	_	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
l _{OZ}	Maximum 3–State Current	5.5	-	±0.5	±5.0	μА	$ \begin{array}{c} V_{I} \; (OE) = V_{IL}, V_{IH} \\ V_{I} = V_{CC}, GND \\ V_{O} = V_{CC}, GND \end{array} $
I _{OLD} I _{OHD}	†Minimum Dynamic Output Current	5.5 5.5	_	-	75 -75	mA mA	V _{OLD} = 1.65 V Max V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

*All outputs loaded; thresholds on input associated with output under test.

AC CHARACTERISTICS $t_r = t_f = 3.0$ ns (For Figures and Waveforms, See Figures 2, 3, and 4.)

		V _{CC} *	T _A = +25°C C _L = 50 pF		$T_A = -40$ °C to +85°C $C_L = 50 \text{ pF}$			
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Unit
t _{PLH}	Propagation Delay Data to Output	5.0	1.5	6.5	9.0	1.5	10.0	ns
t _{PHL}	Propagation Delay Data to Output	5.0	1.5	7.0	9.0	1.5	10.0	ns
t _{PZH}	Output Enable Time	5.0	1.5	6.0	9.0	1.0	10.0	ns
t _{PZL}	Output Enable Time	5.0	1.5	7.0	10.0	1.5	11.0	ns
t _{PHZ}	Output Disable Time	5.0	1.5	8.0	10.5	1.5	11.5	ns
t _{PLZ}	Output Disable Time	5.0	2.0	7.0	10.5	1.5	11.5	ns

^{*}Voltage Range 5.0 V is 5.0 V \pm 0.5 V

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45	pF	V _{CC} = 5.0 V

^{*}All outputs loaded; thresholds on input associated with output under †Maximum test duration 2.0 ms, one output loaded at a time.

SWITCHING WAVEFORMS

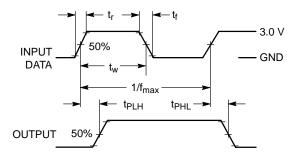


Figure 2.

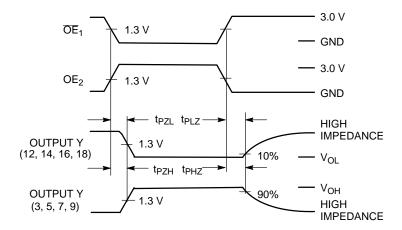
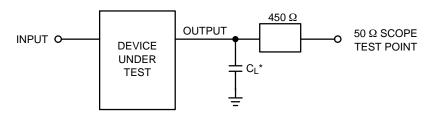



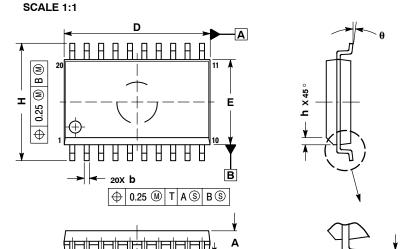
Figure 3.

*Includes all probe and jig capacitance

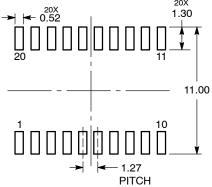
Figure 4. Test Circuit

ORDERING INFORMATION

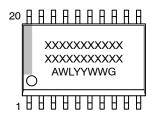
Device	Package	Shipping [†]
MC74ACT241DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74ACT241DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74ACT241DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-20 WB CASE 751D-05 **ISSUE H**


DATE 22 APR 2015

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


	MILLIMETERS				
DIM	MIN	MAX			
Α	2.35	2.65			
A1	0.10	0.25			
b	0.35	0.49			
С	0.23	0.32			
D	12.65	12.95			
E	7.40	7.60			
е	1.27	BSC			
Н	10.05	10.55			
h	0.25	0.75			
L	0.50	0.90			
Δ	0 0	7 0			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

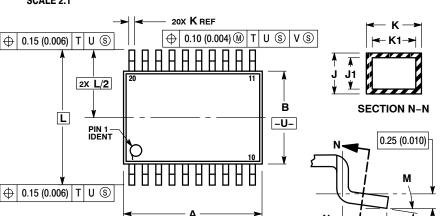
DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1		

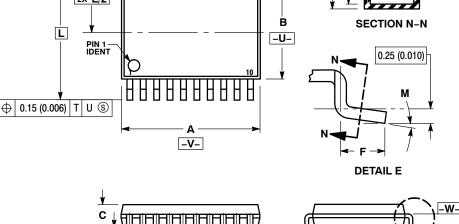
ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

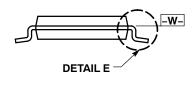
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.100 (0.004) -T- SEATING

16X

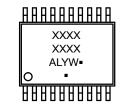

1.26


- 7.06



TSSOP-20 WB CASE 948E ISSUE D

DATE 17 FEB 2016


NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252	BSC	
M	0°	8°	0°	8°	

GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM*

= Assembly Location

= Wafer Lot = Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

DIMENSIONS: MILLIMETERS

0.65

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

0.36

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0