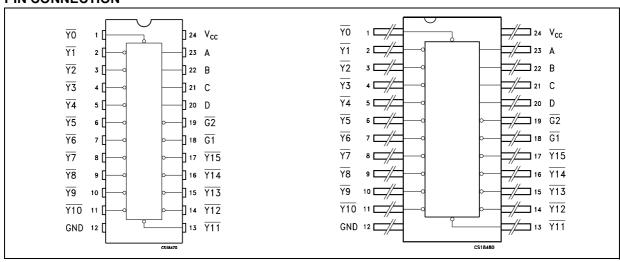


RAD-HARD 4 TO 16 LINE DECODER/DEMULTIPLEXER

- HIGH SPEED: t_{PD} = 16ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 154
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9205-023

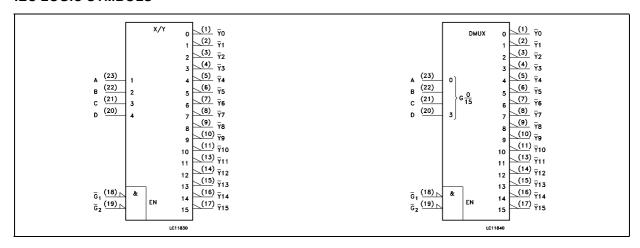
DESCRIPTION

The M54HC154 is an high speed CMOS 4 TO 16 LINE DECODER/DEMULTIPLEXER fabricated with silicon gate $\mathrm{C}^2\mathrm{MOS}$ technology.

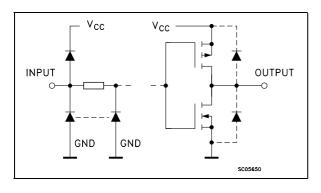

ORDER CODES

PACKAGE	FM	ЕМ
DILC	M54HC154D	M54HC154D1
FPC	M54HC154K	M54HC154K1

A binary code applied to the four inputs (A to D) provides a low level at the selected one of sixteen outputs excluding the other fifteen outputs, when both the strobe inputs, $\overline{G1}$ and $\overline{G2}$, are held low. When either strobe input is held high, the decoding function is inhibited to keep all outputs high. The strobe function makes it easy to expand the decoding lines through cascading, and simplifies the design of address decoding circuits in memory control systems.


All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION



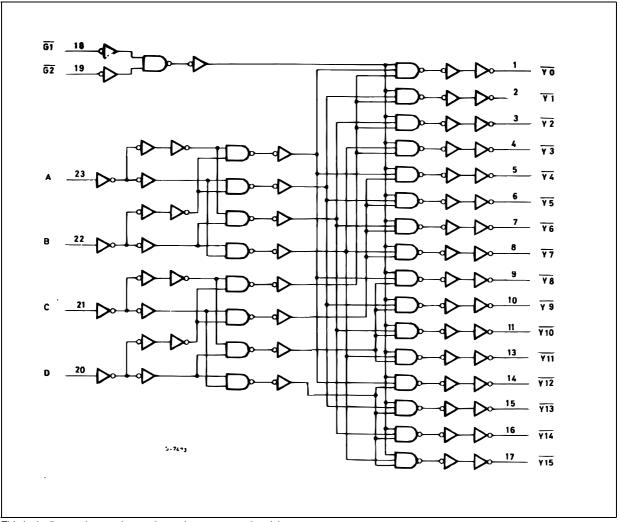
March 2004 1/9

IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17	Y0 to Y15	Outputs (Active Low)
18, 19	G1, G2	Enable Inputs
		(Active Low)
23, 22, 21, 20	A to D	Address Inputs
12	GND	Ground (0V)
24	V_{CC}	Positive Supply Voltage


TRUTH TABLE

			SELECTED OUTDUT (L)			
G1	G2	D	С	В	Α	SELECTED OUTPUT (L)
L	L	L	L	L	L	<u>Y0</u>
L	L	L	L	L	Н	<u>Y1</u>
L	L	L	L	Н	L	<u>Y2</u>
L	L	L	L	Н	Н	<u>Y3</u>
L	L	L	Н	L	L	<u>Y4</u>
L	L	L	Н	L	Н	Y5
L	L	L	Н	Н	L	<u>Y6</u>
L	L	L	Н	Н	Н	Y 7
L	L	Н	L	L	L	<u>Y8</u>
L	L	Н	L	L	Н	<u>Y9</u>
L	L	Н	L	Н	L	Y10
L	L	Н	L	Н	Н	Y11
L	L	Н	Н	L	L	Y12
L	L	Н	Н	L	Н	<u>Y13</u>
L	L	Н	Н	Н	L	Y14
L	L	Н	Н	Н	Н	Y15
Х	Н	Х	X	Х	Х	NONE
Н	Х	Х	Х	Х	Х	NONE

X : Don't Care

2/9

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
I _O	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	300	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		V _{CC} = 4.5V	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		Test Condition		Value							
Symbol	Parameter	v _{cc}		T _A = 25°C		-40 to	85°C	-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5				
	Voltage	4.5		3.15			3.15				V
		6.0		4.2			4.2				
V_{IL}	Low Level Input	2.0				0.5		0.5			
	Voltage	4.5				1.35		1.35			V
		6.0				1.8		1.8			
V _{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9				
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4				
		6.0	I _O =-20 μA	5.9	6.0		5.9				V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13				
		6.0	I _O =-5.2 mA	5.68	5.8		5.63				
V_{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1			
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1			
		6.0	I _O =20 μA		0.0	0.1		0.1			V
		4.5	I _O =4.0 mA		0.17	0.26		0.33			
		6.0	I _O =5.2 mA		0.18	0.26		0.33			
I ₁	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1			μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

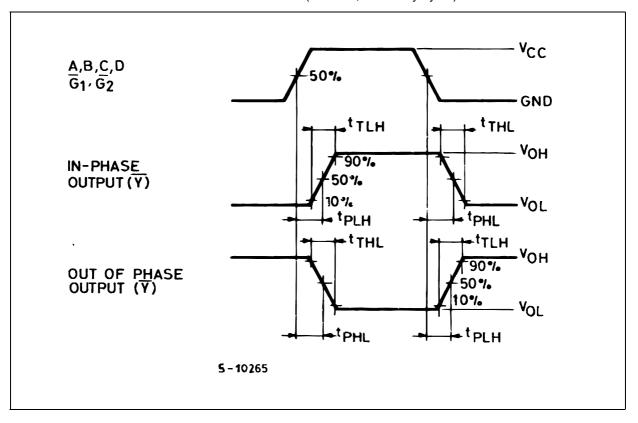
AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		1	est Condition	Value							
Symbol	Parameter	v _{cc}		T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			65	125		155		300	
	Time	4.5			19	25		31		60	ns
	(A, B, C, D - Y)	6.0			16	21		26		51	
t _{PLH} t _{PHL}	Time	2.0			55	160		200		265	
		4.5			17	32		40		53	ns
	(G1, G2 - Y)	6.0			15	27		34		45	

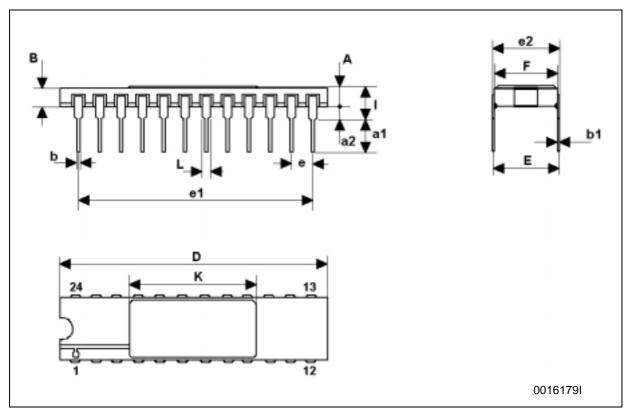
CAPACITIVE CHARACTERISTICS

		7	est Condition	Value							
Symbol	Parameter	neter V _{CC}		T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10			pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			57						pF

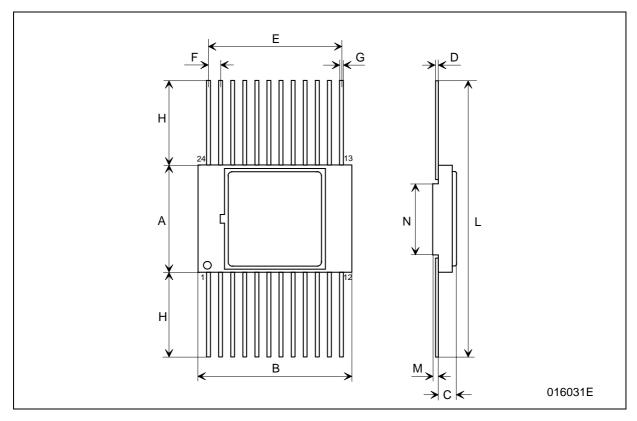
¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}


TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)


477

WAVEFORM 1: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)


DILC-24 (0.3") MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α	2.1		2.72	0.083		0.107		
a1	2.7	3.0	3.3	0.106	0.118	0.130		
a2	1.016	1.27	1.524	0.40	0.50	0.60		
В	1.93	2.16	2.39	0.076	0.85	0.094		
b	0.40	0.45	0.50	0.016	0.018	0.020		
b1	0.20	0.254	0.30	0.008	0.010	0.012		
D	30.17	30.48	30.78	1.188	1.200	1.212		
е	7.36	7.62	7.87	0.290	0.300	0.310		
e1		2.54			0.100			
e2	27.81		28.07	1.095		1.105		
еЗ	7.62	7.87	8.12	0.300	0.310	0.320		
F	7.24		7.75	0.285		0.305		
I			4.24			0.167		
K	14.22		14.48	0.560		0.570		
L	1.22	1.27	1.32	0.048	0.050	0.052		

FPC-24 MECHANICAL DATA

DIM.		mm.		inch				
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	10.70	11.0	11.30	0.421	0.433	0.445		
В	15.3	15.49	15.70	0.602	0.610	0.618		
С	1.45		1.9	0.057		0.075		
D	0.23	0.254	0.3	0.009	0.010	0.012		
E	13.84	13.97	14.10	0.545	0.550	0.555		
F	1.22	1.27	1.32	0.048	0.050	0.052		
G	0.45	0.508	0.55	0.018	0.020	0.022		
Н	7.25		8.25	0.285		0.325		
L	25.0		28.0	0.984		1.102		
М	0.45	0.508	0.55	0.018	0.020	0.022		
N		7.01			0.276			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

