




# LOW VOLTAGE CMOS SINGLE INVERTER WITH 5V TOLERANT INPUT

- **■** 5V TOLERANT INPUTS
- HIGH SPEED: t<sub>PD</sub> = 4.2ns (MAX.) at V<sub>CC</sub> = 3V
- LOW POWER DISSIPATION:  $I_{CC} = 1\mu A \text{ (MAX.)}$  at  $T_A = 25^{\circ}\text{C}$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I<sub>OH</sub>| = I<sub>OL</sub> = 24mA (MIN) at V<sub>CC</sub> = 3V
- BALANCED PROPAGATION DELAYS: t<sub>PLH</sub> ≅ t<sub>PHL</sub>
- OPERATING VOLTAGE RANGE:
   V<sub>CC</sub>(OPR) = 1.65V to 5.5V
   (1.2V Data Retention)
- IMPROVED LATCH-UP IMMUNITY

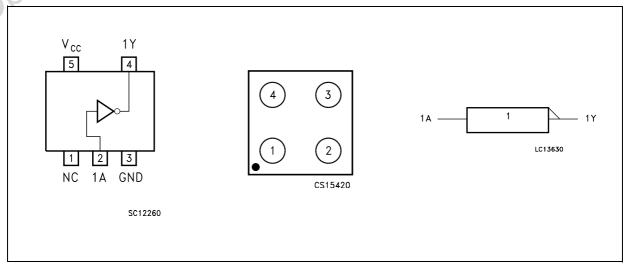


#### **DESCRIPTION**

The 74LX1G04 is a low voltage CMOS SINGLE INVERTER fabricated with sub-micron silicon gate and double-layer metal wiring C<sup>2</sup>MOS technology.

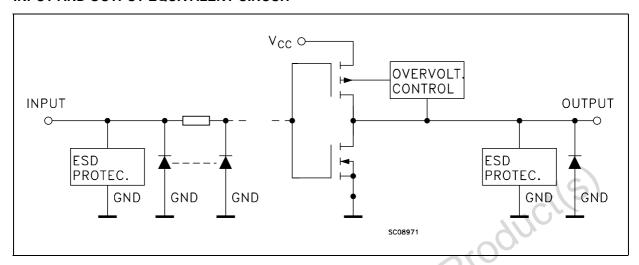
It is ideal for 1.65 to 5.5  $V_{CC}$  operations and low power and low noise applications. The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output.

Power down protection is provided on input and output and 0 to 7V can be accepted on inputs with


#### **ORDER CODES**

| PACKAGE   | T & R       |
|-----------|-------------|
| SOT23-5L  | 74LX1G04STR |
| SOT323-5L | 74LX1G04CTR |
| Flip-Chip | 74LX1G04BJR |

no regard to the supply voltage. It can be interfaced to 5V signal environment for inputs in mixed 3.3/5V system.


All inputs and outputs are equipped with protection circuits against static discharge.

#### PIN CONNECTION AND IEC LOGIC SYMBOLS (top view for SOT, top through view for Flip-Chip)



April 2004 1/13

#### INPUT AND OUTPUT EQUIVALENT CIRCUIT



#### **PIN DESCRIPTION**

| PIN for SOT | PIN for Flip-Chip | SYMBOL   | NAME AND FUNCTION       |
|-------------|-------------------|----------|-------------------------|
| 1           |                   | N.C.     | Not connected           |
| 2           | 1                 | 1A       | Data Input              |
| 4           | 3                 | 1Y       | Data Output             |
| 3           | 2                 | GND      | Ground (0V)             |
| 5           | 4                 | $V_{CC}$ | Positive Supply Voltage |

#### **TRUTH TABLE**

| A | Y |
|---|---|
|   | Н |
| H | L |

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                              | Parameter                                           | Value                         | Unit |
|-------------------------------------|-----------------------------------------------------|-------------------------------|------|
| $V_{CC}$                            | Supply Voltage                                      | -0.5 to +7.0                  | V    |
| V <sub>I</sub>                      | DC Input Voltage                                    | -0.5 to +7.0                  | V    |
| Vo                                  | DC Output Voltage (V <sub>CC</sub> = 0V)            | -0.5 to +7.0                  | V    |
| Vo                                  | DC Output Voltage (High or Low State) (note 1)      | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>                     | DC Input Diode Current                              | - 50                          | mA   |
| I <sub>OK</sub>                     | DC Output Diode Current (note 2)                    | - 50                          | mA   |
| Io                                  | DC Output Current                                   | ± 50                          | mA   |
| I <sub>CC</sub> or I <sub>GND</sub> | DC V <sub>CC</sub> or Ground Current per Supply Pin | ± 50                          | mA   |
| T <sub>stg</sub>                    | Storage Temperature                                 | -65 to +150                   | °C   |
| TL                                  | Lead Temperature (10 sec)                           | 260                           | °C   |

Absolute Maximum Rating are those value beyond which damage to the device may occur. Functional operation under these condition is not implied
1) I<sub>O</sub> absolute maximum rating must be observed
2) V<sub>O</sub> < GND

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                            |                                                        | Parameter                                         |             | Value                | Unit |
|-----------------------------------|--------------------------------------------------------|---------------------------------------------------|-------------|----------------------|------|
| V <sub>CC</sub>                   | Supply Voltage (no                                     | te 1)                                             | 1.65 to 5.5 | V                    |      |
| VI                                | Input Voltage                                          |                                                   |             | 0 to 5.5             | V    |
| Vo                                | Output Voltage (V <sub>C</sub>                         | C = 0V)                                           |             | 0 to 5.5             | V    |
| Vo                                | Output Voltage (Hig                                    | gh or Low State)                                  |             | 0 to V <sub>CC</sub> | V    |
| I <sub>OH</sub> , I <sub>OL</sub> | High or Low Level                                      | Output Current (V <sub>CC</sub> = 4.5 to 5.5)     | /)          | ± 32                 | mA   |
| I <sub>OH</sub> , I <sub>OL</sub> | High or Low Level                                      | Output Current ( $V_{CC} = 3.0 \text{ to } 3.6$ ) | ± 24        | mA                   |      |
| I <sub>OH</sub> , I <sub>OL</sub> | High or Low Level                                      | Output Current (V <sub>CC</sub> = 2.7 to 3.0)     | ± 16        | mA                   |      |
| I <sub>OH</sub> , I <sub>OL</sub> | High or Low Level                                      | Output Current (V <sub>CC</sub> = 2.3 to 2.7)     | ±8 (C       | mA                   |      |
| I <sub>OH</sub> , I <sub>OL</sub> | High or Low Level                                      | Output Current ( $V_{CC} = 1.65$ to 2.3           | BV)         | ± 4                  | mA   |
| T <sub>op</sub>                   | Operating Tempera                                      | ture                                              |             | -55 to 125           | °C   |
| dt/dv                             | Input Rise and Fall                                    | Time (note 2)                                     |             | 0 to 10              | ns/V |
| •                                 | guaranteed: 1.2V to 3.6<br>8V to 2V at $V_{CC} = 3.0V$ | SV                                                |             | Pro                  |      |
| DC SPECI                          | IFICATION                                              |                                                   | 16          |                      |      |
|                                   |                                                        | Test Condition                                    | 20/         | Value                |      |

<sup>1)</sup> Truth Table guaranteed: 1.2V to 3.6V

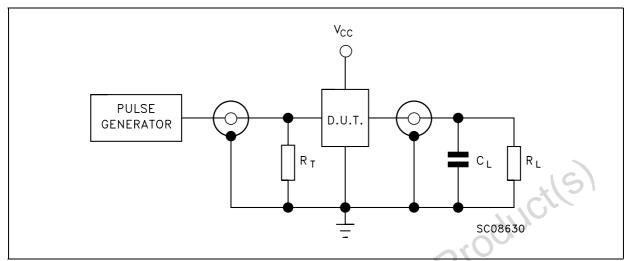
#### DC SPECIFICATION

|                  |                              | Tes             | st Condition                 | Value                |                     |                      |                     |      |
|------------------|------------------------------|-----------------|------------------------------|----------------------|---------------------|----------------------|---------------------|------|
| Symbol           | Symbol Parameter             |                 | 002                          | -40 to               | 85 °C               | -55 to               | 125 °C              | Unit |
|                  | (V)                          | V <sub>CC</sub> |                              | Min.                 | Max.                | Min.                 | Max.                |      |
| V <sub>IH</sub>  | High Level Input             | 1.65 to 1.95    | -                            | 0.75V <sub>CC</sub>  |                     | 0.75V <sub>CC</sub>  |                     |      |
|                  | Voltage                      | 2.3 to 2.7      | 01                           | 0.7V <sub>CC</sub>   |                     | 0.7V <sub>CC</sub>   |                     | V    |
|                  |                              | 3.0 to 5.5      |                              | 0.7V <sub>CC</sub>   |                     | $0.7V_{CC}$          |                     |      |
| $V_{IL}$         | Low Level Input              | 1.65 to 1.95    |                              |                      | 0.25V <sub>CC</sub> |                      | 0.25V <sub>CC</sub> |      |
|                  | Voltage                      | 2.3 to 2.7      |                              |                      | 0.3V <sub>CC</sub>  |                      | 0.3V <sub>CC</sub>  | V    |
|                  |                              | 3.0 to 5.5      |                              |                      | 0.3V <sub>CC</sub>  |                      | 0.3V <sub>CC</sub>  |      |
| V <sub>OH</sub>  | High Level Output            | 1.65 to 4.5     | I <sub>O</sub> =-100 μA      | V <sub>CC</sub> -0.1 |                     | V <sub>CC</sub> -0.1 |                     |      |
|                  | Voltage                      | 1.65            | I <sub>O</sub> =-4 mA        | 1.2                  |                     | 1.2                  |                     |      |
| -01              |                              | 2.3             | I <sub>O</sub> =-8 mA        | 1.9                  |                     | 1.9                  |                     | V    |
| 2                |                              | 3.0             | I <sub>O</sub> =-16 mA       | 2.4                  |                     | 2.4                  |                     | V    |
| P                |                              | 5.0             | I <sub>O</sub> =-24 mA       | 2.2                  |                     | 2.2                  |                     |      |
|                  |                              | 4.5             | I <sub>O</sub> =-32 mA       | 3.8                  |                     | 3.8                  |                     |      |
| V <sub>OL</sub>  | Low Level Output             | 1.65 to 4.5     | I <sub>O</sub> =100 μA       |                      | 0.1                 |                      | 0.1                 |      |
|                  | Voltage                      | 1.65            | I <sub>O</sub> =4 mA         |                      | 0.45                |                      | 0.45                |      |
|                  |                              | 2.3             | I <sub>O</sub> =8 mA         |                      | 0.3                 |                      | 0.3                 | V    |
|                  |                              | 3.0             | I <sub>O</sub> =16 mA        |                      | 0.4                 |                      | 0.4                 | V    |
|                  |                              | 3.0             | I <sub>O</sub> =24 mA        |                      | 0.55                |                      | 0.55                |      |
|                  |                              | 4.5             | I <sub>O</sub> =32 mA        |                      | 0.55                |                      | 0.55                |      |
| I <sub>I</sub>   | Input Leakage<br>Current     | 1.65 to 5.5     | $V_{I} = 0 \text{ to } 5.5V$ |                      | ± 10                |                      | ± 10                | μΑ   |
| l <sub>off</sub> | Power Off Leakage<br>Current | 0               | $V_{I}$ or $V_{O} = 5.5V$    |                      | 10                  |                      | 10                  | μΑ   |
| I <sub>CC</sub>  | Quiescent Supply<br>Current  | 1.65 to 5.5     | $V_I = V_{CC}$ or GND        |                      | 10                  |                      | 10                  | μΑ   |



<sup>2)</sup>  $V_{IN}$  from 0.8V to 2V at  $V_{CC}$  = 3.0V

#### **AC ELECTRICAL CHARACTERISTICS**

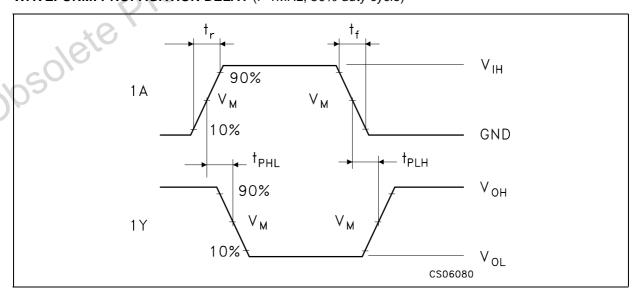

|                                   |                                            | Test Condition                 |    |                |                                     | Value        |        |               |        |      |             |     |    |     |             |     |             |
|-----------------------------------|--------------------------------------------|--------------------------------|----|----------------|-------------------------------------|--------------|--------|---------------|--------|------|-------------|-----|----|-----|-------------|-----|-------------|
| Symbol                            | Parameter                                  | V <sub>CC</sub> C <sub>L</sub> |    | R <sub>L</sub> | $R_L$ $t_s = t_r$ $(\Omega)$ $(ns)$ | -40 to 85 °C |        | -55 to 125 °C |        | Unit |             |     |    |     |             |     |             |
|                                   |                                            | (V)                            |    | Min.           |                                     | Max.         | Min.   | Max.          |        |      |             |     |    |     |             |     |             |
| t <sub>PLH</sub> t <sub>PHL</sub> | t <sub>PHL</sub> Propagation Delay<br>Time | 1.65 to 1.95                   |    |                |                                     | 2            | 9.5    | 2             | 10.5   |      |             |     |    |     |             |     |             |
|                                   |                                            | 2.3 to 2.7                     | 15 | 15 1MΩ         | 15 1MΩ                              | 15 1MΩ       | 15 1ΜΩ | 15 1MΩ        | 15 1ΜΩ | 15   | 4.F. 4.M.O. | 2.0 | 2  | 6.5 | 2           | 7.6 |             |
|                                   |                                            | 3.0 to 3.6                     |    |                |                                     |              |        |               |        |      | 13          | 13  | 13 | 13  | 13   110152 |     | 13   110122 |
|                                   |                                            | 4.5 to 5.5                     |    |                |                                     | 1            | 4.1    | 1             | 5.5    |      |             |     |    |     |             |     |             |
|                                   |                                            | 1.65 to 1.95                   | 30 | 1000           | 2.0                                 | 2            | 10.5   | 2             | 11.5   | ns   |             |     |    |     |             |     |             |
|                                   |                                            | 2.3 to 2.7                     | 30 | 500            | 2.0                                 | 2            | 7.5    | 2             | 8.5    |      |             |     |    |     |             |     |             |
|                                   |                                            | 2.7                            | 50 | 500            | 2.5                                 | 1            | 6.1    | 1             | 7.1    | ) I  |             |     |    |     |             |     |             |
|                                   |                                            | 3.0 to 3.6                     | 50 | 500            | 2.5                                 | 1            | 5.5    | 1             | 6.5    |      |             |     |    |     |             |     |             |
|                                   |                                            | 4.5 to 5.5                     | 50 | 500            | 2.5                                 | 1            | 4.2    | 1             | 5.2    |      |             |     |    |     |             |     |             |

#### **CAPACITANCE CHARACTERISTICS**

|                 |                               | Tes             | Value                   |      |                        |      |      |
|-----------------|-------------------------------|-----------------|-------------------------|------|------------------------|------|------|
| Symbol          | Parameter                     | V <sub>CC</sub> | 16/10                   | •    | T <sub>A</sub> = 25 °C |      | Unit |
|                 |                               | (V)             | cOlo                    | Min. | Тур.                   | Max. |      |
| C <sub>IN</sub> | Input Capacitance             | 0               | 103                     |      | 4                      |      | pF   |
| C <sub>PD</sub> | Power Dissipation Capacitance | 1.8             | f <sub>IN</sub> = 10MHz |      | 36.8                   |      |      |
|                 | (note 1)                      | 2.5             |                         |      | 37                     |      | pF   |
|                 | 1.4                           | 3.3             |                         |      | 38                     |      |      |

<sup>1)</sup> C<sub>PD</sub> is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current can be obtained by the following equation. I<sub>CC(opr)</sub> = C<sub>PD</sub> x V<sub>CC</sub> x f<sub>IN</sub> + I<sub>CC</sub>

#### **TEST CIRCUIT**




 $R_T = Z_{OUT}$  of pulse generator (typically  $50\Omega$ )

## TEST CIRCUIT AND WAVEFORM SYMBOL VALUE

| Symbol          |                    | Vcc                |                    |  |  |  |  |
|-----------------|--------------------|--------------------|--------------------|--|--|--|--|
| Symbol          | 1.65 to 1.95V      | 2.3 to 2.7V        | 2.7 to 5.5V        |  |  |  |  |
| $C_L$           | 15pF/30pF          | 15pF/30pF          | 15pF/50pF          |  |  |  |  |
| $R_{L}$         | 1ΜΩ/1000Ω          | 500Ω               | 500Ω               |  |  |  |  |
| V <sub>IH</sub> | V <sub>CC</sub>    | V <sub>CC</sub>    | V <sub>CC</sub>    |  |  |  |  |
| V <sub>M</sub>  | V <sub>CC</sub> /2 | V <sub>CC</sub> /2 | V <sub>CC</sub> /2 |  |  |  |  |
| $t_r = t_r$     | <2.0ns             | <2.0ns             | <2.5ns             |  |  |  |  |

# WAVEFORM: PROPAGATION DELAY (f=1MHz; 50% duty cycle)



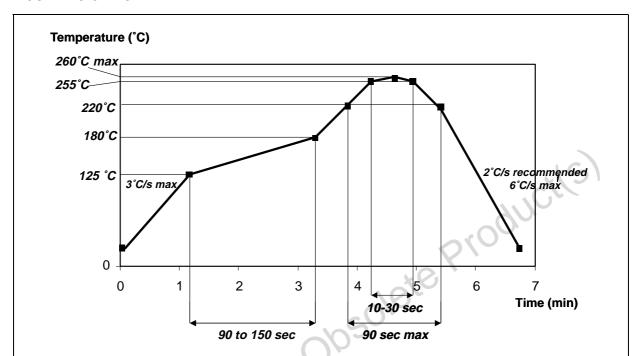
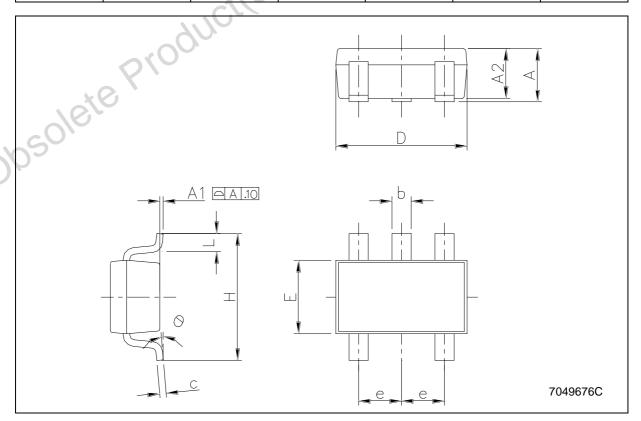
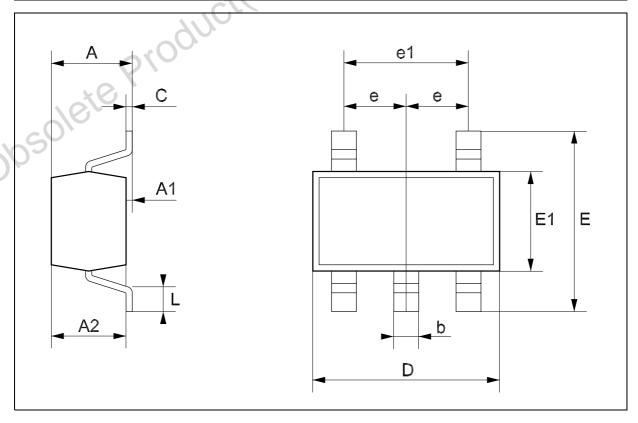



Figure 1 : RECOMMENDED SOLDERING REFLOW PROFILE FOR LEADFREE FLIP-CHIP MOUNTING ON PCB


For Flip-Chip mounting on the PCB, STMicroelectronics recommends the use of a solder stencil aperture of 330 x 330  $\mu$ m<sup>2</sup> maximum and a typical stencil thickness of 125 $\mu$ m. Flip-Chips are fully compatible with the use of near eutectic 95.5Sn 4Ag 0.5Cu solder paste with no clean flux. ST's recommendations for Flip-Chip board mounting are illustrated on the soldering reflow profile shown in figure 1 below.

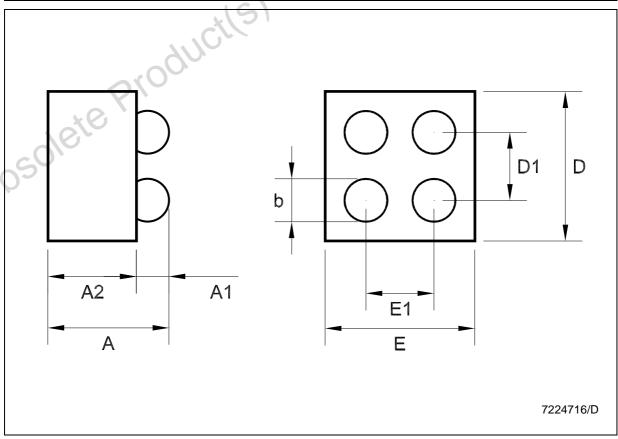
Dwell time in the soldering zone (with temperature higher than 220°C) has to be kept as short as possible to prevent component and substrate damages. Peak temperature must not exceed 260°C. Controlled atmosphere (N2 or N2H2) is recommended during the whole reflow, specially above 150°C.

Flip-Chips are able to withstand three times the previous recommended reflow profile in order to be compatible with a double reflow when SMDs are mounted on both sides of the PCB plus one additional repair. A maximum of three soldering reflows are allowed for these leadfree packages (with repair step included). The use of a no clean flux is highly recommended to avoid any cleaning operation. In order to prevent any bump cracks, ultrasonic cleaning methods are not recommended.


## **SOT23-5L MECHANICAL DATA**

| DIM  |      | mm.  |      |       | mils |       |
|------|------|------|------|-------|------|-------|
| DIM. | MIN. | TYP  | MAX. | MIN.  | TYP. | MAX.  |
| А    | 0.90 |      | 1.45 | 35.4  |      | 57.1  |
| A1   | 0.00 |      | 0.10 | 0.0   |      | 3.9   |
| A2   | 0.90 |      | 1.30 | 35.4  |      | 51.2  |
| b    | 0.35 |      | 0.50 | 13.7  | 111  | 19.7  |
| С    | 0.09 |      | 0.20 | 3.5   | 1000 | 7.8   |
| D    | 2.80 |      | 3.00 | 110.2 |      | 118.1 |
| Е    | 1.50 |      | 1.75 | 59.0  |      | 68.8  |
| е    |      | 0.95 | ans  | 0.    | 37.4 |       |
| Н    | 2.60 |      | 3.00 | 102.3 |      | 118.1 |
| L    | 0.10 | .15  | 0.60 | 3.9   |      | 23.6  |



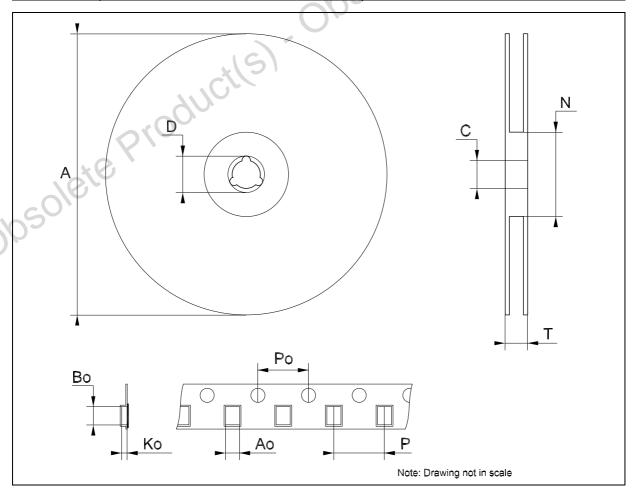

# **SOT323-5L MECHANICAL DATA**

| DIM.   |      | mm.  |      |      |      |      |
|--------|------|------|------|------|------|------|
| DIIVI. | MIN. | ТҮР  | MAX. | MIN. | TYP. | MAX. |
| А      | 0.80 |      | 1.10 | 31.5 |      | 43.3 |
| A1     | 0.00 |      | 0.10 | 0.0  |      | 3.9  |
| A2     | 0.80 |      | 1.00 | 31.5 |      | 39.4 |
| b      | 0.15 |      | 0.30 | 5.9  | .(   | 11.8 |
| С      | 0.10 |      | 0.18 | 3.9  | 9/1/ | 7.1  |
| D      | 1.80 |      | 2.20 | 70.9 | 260  | 86.6 |
| E      | 1.80 |      | 2.40 | 70.9 |      | 94.5 |
| E1     | 1.15 |      | 1.35 | 45.3 |      | 53.1 |
| е      |      | 0.65 | 000  |      | 25.6 |      |
| e1     |      | 1.3  | 10.  |      | 51.2 |      |
| L      | 0.10 | .15  | 0.30 | 3.9  |      | 11.8 |



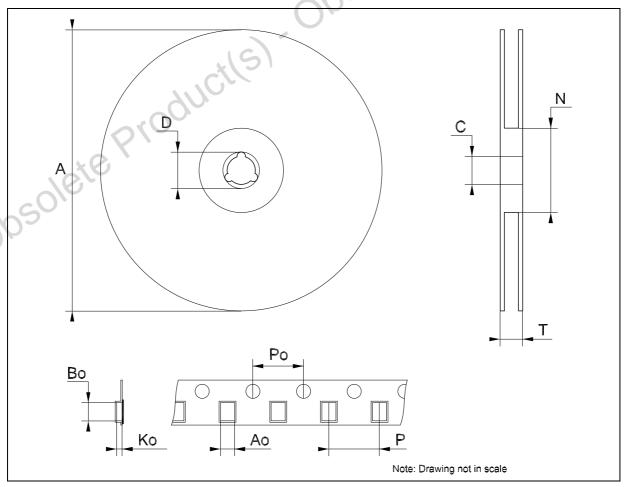

# Flip-Chip4 MECHANICAL DATA

| DIM.   |       | mm.   |       |       | mils  |       |
|--------|-------|-------|-------|-------|-------|-------|
| Dilvi. | MIN.  | TYP   | MAX.  | MIN.  | TYP.  | MAX.  |
| Α      | 0.585 | 0.65  | 0.715 | 23.03 | 25.59 | 28.15 |
| A1     | 0.21  | 0.25  | 0.29  | 8.27  | 9.84  | 11.42 |
| A2     |       | 0.40  |       |       | 15.75 | 1(5)  |
| b      | 0.265 | 0.315 | 0.365 | 10.43 | 12.40 | 14.37 |
| D      | 1.02  | 1.07  | 1.12  | 40.15 | 42.13 | 44.09 |
| D1     |       | 0.5   |       | 18,6  | 19.69 |       |
| E      | 1.02  | 1.07  | 1.12  | 40.15 | 42.13 | 44.09 |
| E1     |       | 0.5   | 10,   |       | 19.69 |       |




| Tape & Reel SOT23-xL | <b>MECHANICAL</b> | <b>DATA</b> |
|----------------------|-------------------|-------------|
|----------------------|-------------------|-------------|

| DIM. | mm.  |      |      | inch  |       |        |
|------|------|------|------|-------|-------|--------|
|      | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.   |
| А    |      |      | 180  |       |       | 7.086  |
| С    | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519  |
| D    | 20.2 |      |      | 0.795 |       |        |
| N    | 60   |      |      | 2.362 |       | .15    |
| Т    |      |      | 14.4 |       |       | 0.567  |
| Ao   | 3.13 | 3.23 | 3.33 | 0.123 | 0.127 | 0.131  |
| Во   | 3.07 | 3.17 | 3.27 | 0.120 | 0.124 | 0.128  |
| Ko   | 1.27 | 1.37 | 1.47 | 0.050 | 0.054 | 0.0.58 |
| Po   | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |
| Р    | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |




| DIM  | mm.      |      |      | inch  |       |       |  |
|------|----------|------|------|-------|-------|-------|--|
| DIM. | MIN. TYP | MAX. | MIN. | TYP.  | MAX.  |       |  |
| А    | 175      | 180  | 185  | 6.889 | 7.086 | 7.283 |  |
| С    | 12.8     | 13   | 13.2 | 0.504 | 0.512 | 0.519 |  |
| D    | 20.2     |      |      | 0.795 |       |       |  |
| N    | 59.5     | 60   | 60.5 |       | 2.362 | 115)  |  |
| Т    |          |      | 14.4 |       |       | 0.567 |  |
| Ao   |          | 2.25 |      |       | 0.088 |       |  |
| Во   |          | 2.7  |      |       | 0.106 |       |  |
| Ko   |          | 1.2  |      | VO.   | 0.047 |       |  |
| Ро   | 3.9      | 4    | 4.1  | 0.153 | 0.157 | 0.161 |  |
| Р    | 3.8      | 4    | 4.2  | 0.149 | 0.157 | 0.165 |  |



# Tape & Reel Flip-Chip 4 MECHANICAL DATA

| DIM. | mm.  |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.  |
| Α    |      |      | 178  |       |       | 6.926 |
| С    | 12.8 |      | 13.2 | 0.504 |       | 0.519 |
| D    | 20.2 |      |      | 0.795 |       |       |
| N    | 59   | 60   | 61   | 2.323 | 2.362 | 2.401 |
| Т    |      |      | 8.4  |       | (     | 0.331 |
| Ao   | 1.12 | 1.17 | 1.22 | 0.044 | 0.046 | 0.048 |
| Во   | 1.12 | 1.17 | 1.22 | 0.044 | 0.046 | 0.048 |
| Ko   | 0.68 | 0.73 | 0.78 | 0.027 | 0.029 | 0.031 |
| Po   | 3.9  | 4    | 4.1  | 0.153 | 0.157 | 0.161 |
| Р    | 3.9  | 4    | 4.1  | 0.153 | 0.157 | 0.161 |





Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

# © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com