

### Is Now Part of



# ON Semiconductor®

# To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="mailto:Fairchild\_questions@onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees



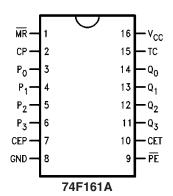
April 2007

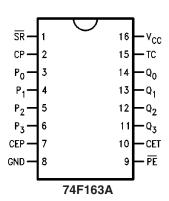
## 74F161A, 74F163A Synchronous Presettable Binary Counter

#### **Features**

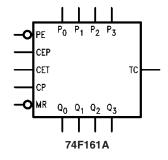
- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count frequency of 120MHz

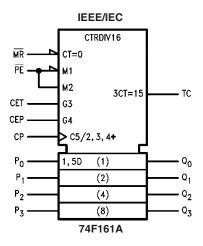
### **General Description**

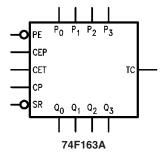

The 74F161A and 74F163A are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multi-stage counters. The 74F161A has an asynchronous Master-Reset input that overrides all other inputs and forces the outputs LOW. The 74F163A has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. The 74F161A and 74F163A are high-speed versions of the 74F161 and 74F163.

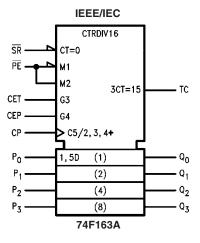

### **Ordering Information**

| Order<br>Number | Package<br>Number | Package Description                                                          |
|-----------------|-------------------|------------------------------------------------------------------------------|
| 74F161ASC       | M16A              | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| 74F161ASJ       | M16D              | 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                |
| 74F161APC       | N16E              | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |
| 74F163ASC       | M16A              | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| 74F163ASJ       | M16D              | 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                |
| 74F163APC       | N16E              | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


### **Connection Diagrams**




### **Logic Symbols**









### **Unit Loading/Fan Out**

| Pin Names                      | Description                                  | U.L.<br>HIGH / LOW | Input I <sub>IH</sub> / I <sub>IL</sub><br>Output I <sub>OH</sub> / I <sub>OL</sub> |
|--------------------------------|----------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| CEP                            | Count Enable Parallel Input                  | 1.0 / 1.0          | 20μA / -0.6mA                                                                       |
| CET                            | Count Enable Trickle Input                   | 1.0 / 2.0          | 20μA / -1.2mA                                                                       |
| СР                             | Clock Pulse Input (Active Rising Edge)       | 1.0 / 1.0          | 20μA / -0.6 mA                                                                      |
| MR (74F161A)                   | Asynchronous Master Reset Input (Active LOW) | 1.0 / 1.0          | 20μA / -0.6 mA                                                                      |
| SR (74F163A)                   | Synchronous Reset Input (Active LOW)         | 1.0 / 2.0          | 20μA / -1.2 mA                                                                      |
| P <sub>0</sub> -P <sub>3</sub> | Parallel Data Inputs                         | 1.0 / 1.0          | 20μA / -0.6 mA                                                                      |
| PE                             | Parallel Enable Input (Active LOW)           | 1.0 / 2.0          | 20μA / -1.2mA                                                                       |
| Q <sub>0</sub> –Q <sub>3</sub> | Flip-Flop Outputs                            | 50 / 33.3          | -1mA / 20mA                                                                         |
| TC                             | Terminal Count Output                        | 50 / 33.3          | -1mA / 20mA                                                                         |

### **Functional Description**

The 74F161A and 74F163A count in modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 74F161A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset (74F161A), synchronous reset (74F163A), parallel load, count-up and hold. Five control inputs-Master Reset (MR, 74F161A), Synchronous Reset (SR, 74F163A), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR ('F161A) or SR (74F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 74F161A and 74F163A use D-type edge triggered flip-flops and changing the  $\overline{SR}$ ,  $\overline{PE}$ , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multi-stage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 74F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.

#### **Logic Equations:**

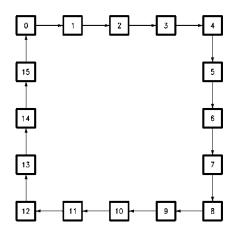
Count Enable = CEP • CET • PE

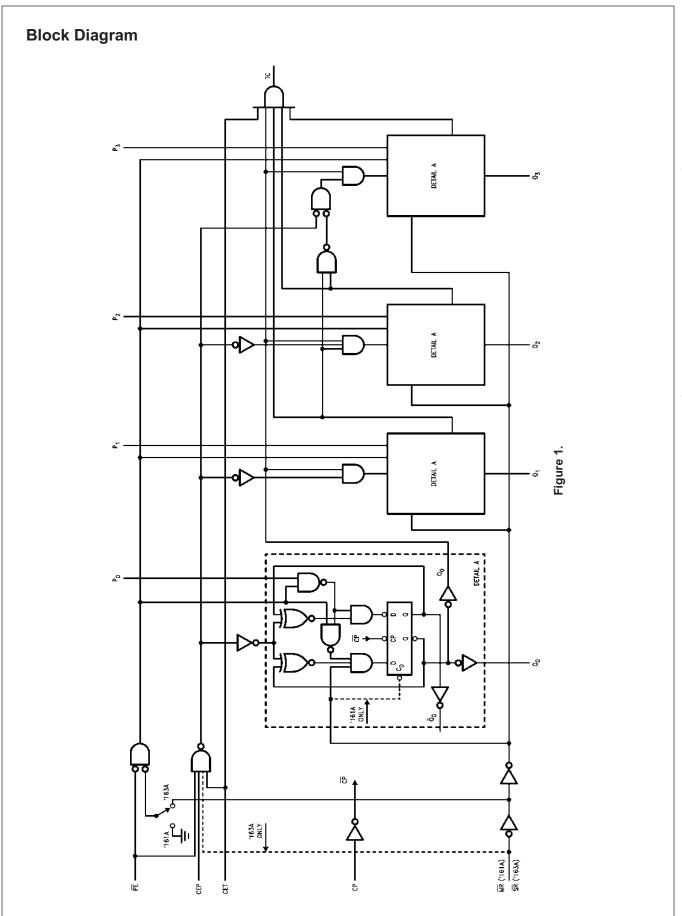
 $\mathsf{TC} = \mathsf{Q}_0 \bullet \mathsf{Q}_1 \bullet \mathsf{Q}_2 \bullet \mathsf{Q}_3 \bullet \mathsf{CET}$ 

#### **Mode Select Table**

| SR <sup>(1)</sup> | PE | CET | CEP | Action on the Rising<br>Clock Edge (✓) |
|-------------------|----|-----|-----|----------------------------------------|
| L                 | Х  | Х   | Х   | Reset (Clear)                          |
| Н                 | L  | Х   | Х   | Load (P <sub>n</sub> →Q <sub>n</sub> ) |
| Н                 | Н  | Н   | Н   | Count (Increment)                      |
| Н                 | Н  | L   | Х   | No Change (Hold)                       |
| Н                 | Н  | Х   | L   | No Change (Hold)                       |

H = HIGH Voltage Level


L = LOW Voltage Level


X = Immaterial

#### Note:

1. For 74F163A only

### **State Diagram**





©1988 Fairchild Semiconductor Corporation 74F161A, 74F163A Rev. 1.0.2

### **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol           | Parameter                                                           | Rating                               |
|------------------|---------------------------------------------------------------------|--------------------------------------|
| T <sub>STG</sub> | Storage Temperature                                                 | −65°C to +150°C                      |
| T <sub>A</sub>   | Ambient Temperature Under Bias                                      | –55°C to +125°C                      |
| T <sub>J</sub>   | Junction Temperature Under Bias                                     | –55°C to +150°C                      |
| V <sub>CC</sub>  | V <sub>CC</sub> Pin Potential to Ground Pin                         | -0.5V to +7.0V                       |
| V <sub>IN</sub>  | Input Voltage <sup>(2)</sup>                                        | -0.5V to +7.0V                       |
| I <sub>IN</sub>  | Input Current <sup>(2)</sup>                                        | -30mA to +5.0mA                      |
| Vo               | Voltage Applied to Output in HIGH State (with V <sub>CC</sub> = 0V) |                                      |
|                  | Standard Output                                                     | -0.5V to V <sub>CC</sub>             |
|                  | 3-STATE Output                                                      | –0.5V to +5.5V                       |
|                  | Current Applied to Output in LOW State (Max.)                       | twice the rated I <sub>OL</sub> (mA) |
|                  | ESD Last Passing Voltage (Min.)                                     | 4000V                                |

#### Note:

2. Either voltage limit or current limit is sufficient to protect inputs.

### **Recommended Operating Conditions**

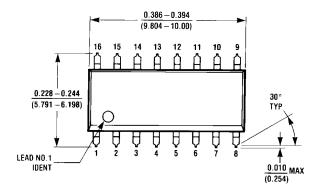
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol          | Parameter                    | Rating         |
|-----------------|------------------------------|----------------|
| T <sub>A</sub>  | Free Air Ambient Temperature | 0°C to +70°C   |
| V <sub>CC</sub> | Supply Voltage               | +4.5V to +5.5V |

### **DC Electrical Characteristics**

| Symbol           | Parameter                                 | V <sub>CC</sub> | Conditions                                              | Min. | Тур.                                                | Max. | Units |      |  |
|------------------|-------------------------------------------|-----------------|---------------------------------------------------------|------|-----------------------------------------------------|------|-------|------|--|
| V <sub>IH</sub>  | Input HIGH Voltage                        |                 | Recognized as a HIGH Signal                             | 2.0  |                                                     |      | V     |      |  |
| V <sub>IL</sub>  | Input LOW Voltage                         |                 | Recognized as a LOW Signal                              |      |                                                     | 0.8  | V     |      |  |
| V <sub>CD</sub>  | Input Clamp Diode Voltage                 | Min.            | $I_{IN} = -18mA$                                        |      |                                                     | -1.2 | V     |      |  |
| V <sub>OH</sub>  | Output HIGH 10% V <sub>CC</sub>           | Min.            |                                                         | 2.5  |                                                     |      | V     |      |  |
|                  | Voltage 5% V <sub>CC</sub>                |                 |                                                         | 2.7  |                                                     |      |       |      |  |
| V <sub>OL</sub>  | Output LOW 10% V <sub>CC</sub><br>Voltage | Min.            | I <sub>OL</sub> = 20mA                                  |      |                                                     | 0.5  | V     |      |  |
| I <sub>IH</sub>  | Input HIGH Current                        | Max.            | V <sub>IN</sub> = 2.7V                                  |      |                                                     | 5.0  | μA    |      |  |
| I <sub>BVI</sub> | Input HIGH Current<br>Breakdown Test      | Max.            | V <sub>IN</sub> = 7.0V                                  |      |                                                     | 7.0  | μA    |      |  |
| I <sub>CEX</sub> | Output HIGH Leakage<br>Current            | Max.            | V <sub>OUT</sub> = V <sub>CC</sub>                      |      |                                                     | 50   | μA    |      |  |
| V <sub>ID</sub>  | Input Leakage Test                        | 0.0             | I <sub>ID</sub> = 1.9μA, All Other Pins<br>Grounded     | 4.75 |                                                     |      | V     |      |  |
| I <sub>OD</sub>  | Output Leakage Circuit<br>Current         | 0.0             | V <sub>IOD</sub> = 150mV, All Other Pins<br>Grounded    |      |                                                     | 3.75 | μA    |      |  |
| I <sub>IL</sub>  | Input LOW Current                         | Max.            | $V_{IN} = 0.5V$ (CEP, CP, $\overline{MR}$ , $P_0-P_3$ ) |      |                                                     | -0.6 | mA    |      |  |
|                  |                                           |                 |                                                         |      | $V_{IN} = 0.5V (CET, \overline{PE}, \overline{SR})$ |      |       | -1.2 |  |
| I <sub>OS</sub>  | Output Short-Circuit<br>Current           | Max.            | V <sub>OUT</sub> = 0.0V                                 | -60  |                                                     | -150 | mA    |      |  |
| I <sub>CC</sub>  | Power Supply Voltage                      | Max.            |                                                         |      | 37                                                  | 55   | mA    |      |  |

### **AC Electrical Characteristics**


|                  |                                                    | V <sub>C</sub> | T <sub>A</sub> = +25°C,<br>V <sub>CC</sub> = +5.0V,<br>C <sub>L</sub> = 50pF |      | $T_A = -55$ °C to +125°C,<br>$V_{CC} = +5.0V,$<br>$C_L = 50$ pF |      | T <sub>A</sub> = 0°C to 70°C,<br>V <sub>CC</sub> = +5.0V,<br>C <sub>L</sub> = 50pF |      |       |
|------------------|----------------------------------------------------|----------------|------------------------------------------------------------------------------|------|-----------------------------------------------------------------|------|------------------------------------------------------------------------------------|------|-------|
| Symbol           | Parameter                                          | Min.           | Тур.                                                                         | Max. | Min.                                                            | Max. | Min.                                                                               | Max. | Units |
| f <sub>MAX</sub> | Maximum Count Frequency                            |                | 100                                                                          |      |                                                                 |      |                                                                                    |      | MHz   |
| t <sub>PLH</sub> | Propagation Delay,                                 | 3.5            | 5.5                                                                          | 7.5  | 3.5                                                             | 9.0  | 3.5                                                                                | 8.5  | ns    |
| t <sub>PHL</sub> | CP to Q <sub>n</sub> (PE Input HIGH)               | 3.5            | 7.5                                                                          | 10.0 | 3.5                                                             | 11.5 | 3.5                                                                                | 11.0 |       |
| t <sub>PLH</sub> | Propagation Delay,                                 | 4.0            | 6.0                                                                          | 8.5  | 4.0                                                             | 10.0 | 4.0                                                                                | 9.5  | ns    |
| t <sub>PHL</sub> | CP to Q <sub>n</sub> (PE Input LOW)                | 4.0            | 6.0                                                                          | 8.5  | 4.0                                                             | 10.0 | 4.0                                                                                | 9.5  |       |
| t <sub>PLH</sub> | Propagation Delay,                                 | 5.0            | 10.0                                                                         | 14.0 | 5.0                                                             | 16.5 | 5.0                                                                                | 15.0 | ns    |
| t <sub>PHL</sub> | CP to TC                                           | 5.0            | 10.0                                                                         | 14.0 | 5.0                                                             | 15.5 | 5.0                                                                                | 15.0 |       |
| t <sub>PLH</sub> | Propagation Delay,                                 | 2.5            | 4.5                                                                          | 7.5  | 2.5                                                             | 9.0  | 2.5                                                                                | 8.5  | ns    |
| t <sub>PHL</sub> | CET to TC                                          | 2.5            | 4.5                                                                          | 7.5  | 2.5                                                             | 9.0  | 2.5                                                                                | 8.5  |       |
| t <sub>PHL</sub> | Propagation Delay,  MR to Q <sub>n</sub> (74F161A) | 5.5            | 9.0                                                                          | 12.0 | 5.5                                                             | 14.0 | 5.5                                                                                | 13.0 | ns    |
| t <sub>PHL</sub> | Propagation Delay, MR to TC (74F161A)              | 4.5            | 8.0                                                                          | 10.5 | 4.5                                                             | 12.5 | 4.5                                                                                | 11.5 | ns    |

### **AC Operating Requirements**

|                    |                                           |      | +25°C,<br>+5.0V |      | to +125°C,<br>+5.0V | $T_A = 0$ °C $V_{CC} =$ | to 70°C,<br>+5.0V |       |
|--------------------|-------------------------------------------|------|-----------------|------|---------------------|-------------------------|-------------------|-------|
| Symbol             | Parameter                                 | Min. | Max.            | Min. | Max.                | Min.                    | Max.              | Units |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW,                  | 5.0  |                 | 5.5  |                     | 5.0                     |                   | ns    |
| t <sub>S</sub> (L) | P <sub>n</sub> to CP                      | 5.0  |                 | 5.5  |                     | 5.0                     |                   |       |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW,                   | 2.0  |                 | 2.5  |                     | 2.0                     |                   | ns    |
| t <sub>H</sub> (L) | P <sub>n</sub> to CP                      | 2.0  |                 | 2.5  |                     | 2.0                     |                   |       |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW,                  | 11.0 |                 | 13.5 |                     | 11.5                    |                   | ns    |
| t <sub>S</sub> (L) | PE or SR to CP                            | 8.5  |                 | 10.5 |                     | 9.5                     |                   |       |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW,<br>PE or SR to CP | 2.0  |                 | 3.6  |                     | 2.0                     |                   | ns    |
| t <sub>H</sub> (L) |                                           | 0    |                 | 0    |                     | 0                       |                   |       |
| t <sub>S</sub> (H) | Setup Time, HIGH or LOW,                  | 11.0 |                 | 13.0 |                     | 11.5                    |                   | ns    |
| t <sub>S</sub> (L) | CEP or CET to CP                          | 5.0  |                 | 6.0  |                     | 5.0                     |                   |       |
| t <sub>H</sub> (H) | Hold Time, HIGH or LOW,                   | 0    |                 | 0    |                     | 0                       |                   | ns    |
| t <sub>H</sub> (L) | CEP or CET to CP                          | 0    |                 | 0    |                     | 0                       |                   |       |
| t <sub>W</sub> (H) | Clock Pulse Width (Load),                 | 5.0  |                 | 5.0  |                     | 5.0                     |                   | ns    |
| t <sub>W</sub> (L) | HIGH or LOW                               | 5.0  |                 | 5.0  |                     | 5.0                     |                   |       |
| t <sub>W</sub> (H) | Clock Pulse Width (Count),                | 4.0  |                 | 5.0  |                     | 4.0                     |                   | ns    |
| t <sub>W</sub> (L) | HIGH or LOW                               | 6.0  |                 | 8.0  |                     | 7.0                     |                   |       |
| t <sub>W</sub> (L) | MR Pulse Width, LOW (74F161A)             | 5.0  |                 | 5.0  |                     | 5.0                     |                   | ns    |
| t <sub>REC</sub>   | Recovery Time, MR to CP (74F161A)         | 6.0  |                 | 6.0  |                     | 6.0                     |                   | ns    |

### **Physical Dimensions**

Dimensions are in inches (millimeters) unless otherwise noted.





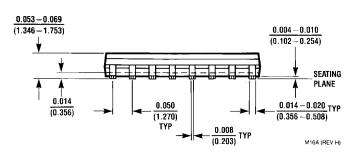
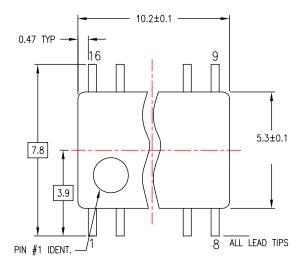
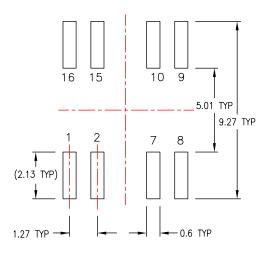
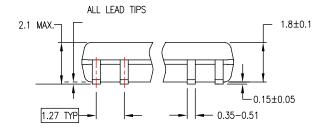
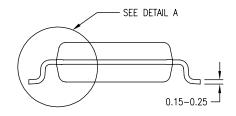





Figure 2. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A


### Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.



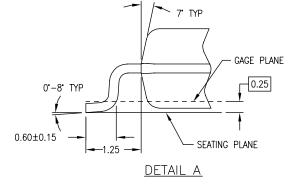


#### LAND PATTERN RECOMMENDATION





#### DIMENSIONS ARE IN MILLIMETERS


#### NOTES:

- NOTES:

  A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.

  B. DIMENSIONS ARE IN MILLIMETERS.

  C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.



M16DREVC

Figure 3. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

### Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

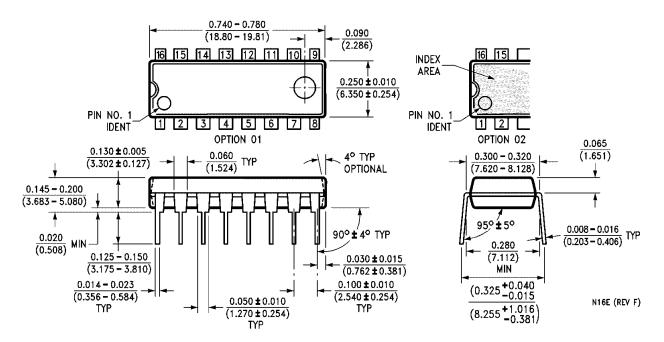



Figure 4. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E





#### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® TinyLogic<sup>®</sup> HiSeC™ Programmable Active Droop™ Across the board. Around the world.™ QFĔT<sup>®</sup> TINYOPTO™ i-l o™ ActiveArray™ ImpliedDisconnect™  $\mathsf{Q}\mathsf{S}^{\mathsf{TM}}$ TinyPower™ TinyWire™ Bottomless™ IntelliMAX™ QT Optoelectronics™ Build it Now™ Quiet Series™ TruTranslation™ ISOPLANAR™ μSerDes™ CoolFET™ MICROCOUPLER™ RapidConfigure™ CROSSVOLT™ RapidConnect™ UHC<sup>®</sup> MicroPak™ CTL™ UniFET™ MICROWIRE™ ScalarPump™ Current Transfer Logic™ VCX™ SMART START™  $MSX^{\text{TM}}$ DOME™ MSXPro™ SPM® Wire™

E<sup>2</sup>CMOS™  $\mathsf{STEALTH}^{\mathsf{TM}}$  $OCX^{TM}$ EcoSPARK® SuperFET™ OCXPro™ EnSigna™ OPTOLOGIC® SuperSOT™-3 FACT Quiet Series™ **OPTOPLANAR®** SuperSOT™-6 FACT<sup>®</sup> SuperSOT™-8 PACMAN™  $\mathsf{FAST}^{^{\circledR}}$ SyncFET™ РОР™ FASTr™  $\mathsf{TCM}^\mathsf{TM}$ Power220®

FPS™ Power247® The Power Franchise®

FRFET® PowerEdge™

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification     | Product Status         | Definition                                                                                                                                                                                               |  |  |  |
|------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Advance Information          | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |  |
| Preliminary First Production |                        | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |  |
| No Identification Needed     | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.                                                   |  |  |  |
| Obsolete                     | Not In Production      | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.                                      |  |  |  |

Rev. I24

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

Phone: 81-3-5817-1050

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com