MC74HC597A

8-Bit Serial or Parallel-Input/Serial-Output Shift Register with Input Latch
 High-Performance Silicon-Gate CMOS

The MC74HC597A is identical in pinout to the LS597. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs

This device consists of an 8-bit input latch which feeds parallel data to an 8-bit shift register. Data can also be loaded serially.

The HC597A is similar in function to the HC589A, which is a 3-state device.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 516 FETs or 129 Equivalent Gates
- These are $\mathrm{Pb}-$ Free Devices*

[^0]ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAMS DIAGRAMS
16 597A ALYW•

A = Assembly Location
= Wafer Lo
WY, W = Wor
G or • = Pb-Free Package
(Note: Microdot may be in either location)

MC74HC597A

Figure 1. Pin Assignment

Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC597ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC597ADR2G	SOIC-16 (Pb-Free)	2500 Units / Reel
MC74HC597ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Reel
MC74HC597ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to + 7.0	V
$V_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$\mathrm{l}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic or Ceramic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package) (Ceramic DIP)	$\begin{aligned} & 260 \\ & 300 \end{aligned}$	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{Cc}}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
Ceramic DIP: $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 100° to $125^{\circ} \mathrm{C}$
SOIC Package: - $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		- 55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{f}$	Input Rise and Fall Time (Figure 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 600 \\ 500 \\ 400 \end{gathered}$	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit	
				$\begin{aligned} & -55 \text { to } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {lout }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {in }} V_{\text {IH }} \text { or } V_{\text {IL }} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 44 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 44 \\ & 5.9 \end{aligned}$	V	
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \begin{array}{l} \mid \\|_{\text {out }} \leq 2.4 \mathrm{~mA} \\ \\ \\ \\ \left\|l_{\text {out }}\right\| \leq 4.0 \mathrm{~mA} \\ \left\|\left.\right\|_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{array} \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$		
V OL	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \\ & \\|_{\text {out }} \mid \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \begin{array}{l} \left\|\left.\right\|_{\text {out }} \leq 2.4 \mathrm{~mA}\right. \\ \\ \\ \\ \\ \\ \\ \\ \left.\right\|_{\text {out }} \mid \leq 4.0 \mathrm{~mA} \end{array} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$V_{\text {in }}=V_{\text {cc }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
I_{Cc}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$	

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50% Duty Cycle), Shift Clock (Figures 4 and 10)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 50 \end{aligned}$	$\begin{gathered} 9 \\ 14 \\ 28 \\ 45 \end{gathered}$	$\begin{gathered} \hline 8 \\ 12 \\ 25 \\ 40 \end{gathered}$	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Latch Clock to Q_{H} (Figures 3 and 10)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 175 \\ & 100 \\ & 40 \\ & 30 \end{aligned}$	$\begin{gathered} 225 \\ 110 \\ 50 \\ 40 \end{gathered}$	$\begin{aligned} & 275 \\ & 125 \\ & 60 \\ & 50 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Shift Clock to Q_{H} (Figures 4 and 10)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 90 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 200 \\ 130 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} \hline 240 \\ 160 \\ 48 \\ 40 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to Q_{H} (Figures 5 and 10)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 90 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 200 \\ 130 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} \hline 240 \\ 160 \\ 48 \\ 40 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t} \mathrm{tPLH}, \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Maximum Propagation Delay, Serial Shift/Parallel Load to Q_{H} (Figures 6 and 10)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 90 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 200 \\ 130 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} \hline 240 \\ 160 \\ 48 \\ 40 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 3 and 10)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 36 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

$\mathrm{C}_{\text {PD }}$		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	pF
	Power Dissipation Capacitance (Per Package)*	40	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

PIN DESCRIPTIONS

DATA INPUTS

A, B, C, D, E, F, G, H (Pins 15, 1, 2, 3, 4, 5, 6, 7)
Parallel data inputs. Data on these inputs is stored in the input latch on the rising edge of the Latch Clock input.

S_{A} (Pin 14)

Serial data input. Data on this input is shifted into the shift register on the rising edge of the Shift Clock input it Serial Shift/Parallel Load is high. Data on this input is ignored when Serial Shift/Parallel Load is low.

CONTROL INPUTS

Serial Shift/Parallel Load (Pin 13)

Shift register mode control. When a high level is applied to this pin, the shift register is allowed to serially shift data. When a low level is applied to this pin, the shift register accepts parallel data from the input latch, and serial shifting is inhibited.

Reset (Pin 10)

Asynchronous, Active-low shift register reset. A low level applied to this input resets the shift register to a low level, but does not change the data in the input latch.

Shift Clock (Pin 11)

Serial shift register clock. A low-to-high transition on this input shifts data on the Serial Data Input into the shift register and data in stage H is shifted out Q_{H}, being replaced by the data previously stored in stage G.

Latch Clock (Pin 12)

Latch clock. A low-to-high transition on this input loads the parallel data on inputs A-H into the input latch.

OUTPUT

$\mathbf{Q}_{\mathrm{H}}($ Pin 9$)$
Serial data output. This pin is the output from the last stage of the shift register.

MC74HC597A

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	V_{cc} V	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Parallel Data inputs A-H to Latch Clock (Figure 7)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input S_{A} to Shift Clock (Figure 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Shift/Parallel Load to Shift Clock (Figure 9)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Latch Clock to Parallel Data Inputs A-H (Figure 7)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 15 \\ 10 \\ 2 \\ 2 \end{gathered}$	$\begin{gathered} 20 \\ 15 \\ 3 \\ 3 \end{gathered}$	$\begin{gathered} 30 \\ 25 \\ 5 \\ 4 \end{gathered}$	ns
$\mathrm{th}_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input S_{A} (Figure 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 5)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock and Shift Clock (Figures 3 and 4)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 5)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Serial Shift/Parallel Load (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 35 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 19 \\ & 16 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

FUNCTION TABLE

Operation	Inputs						Resulting Function		
	Reset	Serial Shift／ Parallel Load	Latch Clock	Shift Clock	Serial Input S_{A}	Parallel Inputs A－H	Latch Contents	Shift Register Contents	Output Q_{H}
Reset shift register	L	X	L，H，乙	X	X	X	U	L	L
Reset shift register；Ioad parallel data into data latch	L	X	\bigcirc	X	X	a－h	a－h	L	L
Load parallel data into data latch	H	H	ת	L，H，乙	X	a－h	a－h	U	U
Transfer latch contents to shift register	H	L	L，H，ᄂ	X	X	X	U	$\mathrm{LR}_{N} \rightarrow \mathrm{SR}_{N}$	LR_{H}
Contents of data latch and shift register are unchanged	H	H	L，H，ᄂ	L，H，乙	X	X	U	U	U
Load parallel data into data latch and shift register	H	L	\digamma	X	X	a－h	a－h	a－h	h
Shift serial data into shift register	H	H	X	Υ	D	X	＊	$\begin{gathered} \mathrm{SR}_{\mathrm{A}}=\mathrm{D} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$
Load parallel data into data latch and shift serial data into shift register	H	H	Γ	Γ	D	a－h	a－h	$\begin{gathered} \mathrm{SR}_{\mathrm{A}}=\mathrm{D} \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$
$\begin{aligned} & \text { LR = latch register contents } \\ & \text { SR = shift register contents } \\ & \text { * }=\text { depends on latch clock input } \end{aligned}$			a－h＝data at parallel data inputs A－H $D=$ data (L, H) at serial data input S_{A}				$\begin{aligned} & U=\text { remains unchange } \\ & X=\text { don't care } \end{aligned}$		

SWITCHING WAVEFORMS

Figure 3. (Serial Shift/Parallel Load = L)

Figure 5.

Figure 7.

Figure 9.

Figure 4. (Serial Shift/Parallel Load = H)

Figure 6.

Figure 8.

*Includes all probe and jig capacitance

MC74HC597A

EXPANDED LOGIC DIAGRAM

*NOTE: Stages C thru G (not shown in detail) are identical to stages A and B above.
Figure 11. Extended Logic Diagram

MC74HC597A

TIMING DIAGRAM

Figure 12. Timing Diagram

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

