ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

CMOS MSI

Quad R-S Latches

The MC14043B and MC14044B quad R–S latches are constructed with MOS P–Channel and N–Channel enhancement mode devices in a single monolithic structure. Each latch has an independent Q output and set and reset inputs. The Q outputs are gated through three–state buffers having a common enable input. The outputs are enabled with a logical "1" or high on the enable input; a logical "0" or low disconnects the latch from the Q outputs, resulting in an open circuit at the Q outputs.

Features

- Double Diode Input Protection
- Three-State Outputs with Common Enable
- Outputs Capable of Driving Two Low–power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

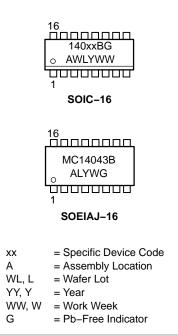
	00,		
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature (8–Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

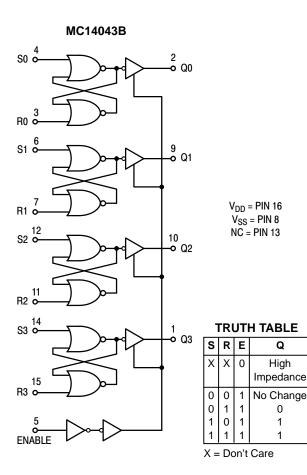

ON Semiconductor®

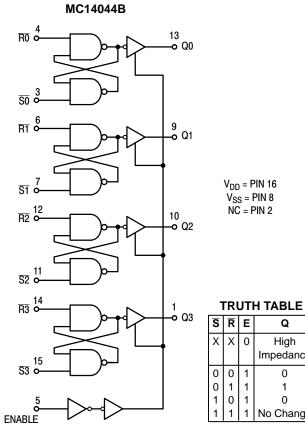
http://onsemi.com

D SUFFIX CASE 751B SOEIAJ-16 F SUFFIX CASE 966

MARKING DIAGRAMS

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.


PIN ASSIGNMENT

	NIC 14	0430	
Q3 [1●	16] V _{DD}
Q0 [2	15] R3
R0 [3	14] S3
S0 [4	13	DNC
ΕC	5	12] S2
S1 [6	11] R2
R1 [7	10] Q2
v _{ss} [8	9] Q1

MC14044B						
Q3 [1●	16	D V _{DD}			
NC [2	15] <u>53</u>			
<u>50</u> [3	14] R 3			
R0 [4	13] Q0			
ΕC	5	12] <u>R2</u>			
R1 [6	11] <u>52</u>			
<u>51</u> [7	10] Q2			
V _{SS} [8	9] Q1			

NC = NO CONNECTION

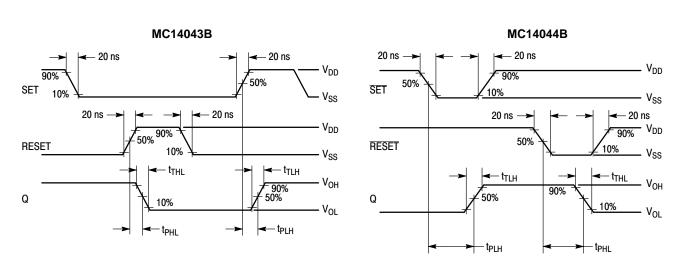
S	R	E	Q			
Х	X	0	High Impedance			
0	0	1	0			
0	1	1	1			
1	0	1	0			
1	1	1	No Change			
Χ =	X = Don't Care					

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
-----------------------------------	---

				- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		l _{in}	15	_	±0.1	-	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	1.0 2.0 4.0	- - -	0.002 0.004 0.006	1.0 2.0 4.0	_ _ _	30 60 120	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outpu buffers switching)	nt,	Ι _Τ	5.0 10 15			I _T = (1	.58 μΑ/kHz) .15 μΑ/kHz) .73 μΑ/kHz)	f + I _{DD}			μAdc
Three-State Output Leaka Current	ge	I _{TL}	15	-	±0.1	_	±0.0001	±0.1	_	±3.0	μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

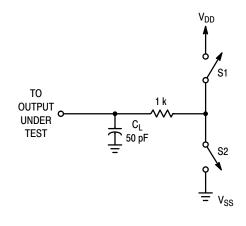

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

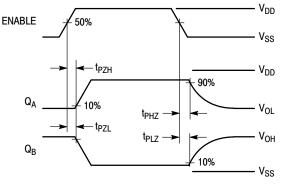
where: I_T is in μA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise Time	t _{TLH}					ns
t _{TLH} = (1.35 ns/pF) C _L + 32.5 ns		5.0	_	100	200	
$t_{TLH} = (0.60 \text{ ns/pF}) C_1 + 20 \text{ ns}$		10	_	50	100	
$t_{TLH} = (0.40 \text{ ns/pF}) C_{L} + 20 \text{ ns}$		15	-	40	80	
Output Fall Time	t _{THL}					ns
t _{THL} = (1.35 ns/pF) C _L + 32.5 ns		5.0	-	100	200	
t _{THL} = (0.60 ns/pF) C _L + 20 ns		10	-	50	100	
t _{THL} = (0.40 ns/pF) C _L + 20 ns		15	-	40	80	
Propagation Delay Time	t _{PLH}					ns
t _{PLH} = (0.90 ns/pF) C _L + 130 ns		5.0	-	175	350	
t _{PLH} = (0.36 ns/pF) C _L + 57 ns		10	-	75	175	
t _{PLH} = (0.26 ns/pF) C _L + 47 ns		15	-	60	120	
t _{PHL} = (0.90 ns/pF) C _L + 130 ns	t _{PHL}	5.0	_	175	350	ns
t _{PHL} = (0.90 ns/pF) C _L + 57 ns		10	-	75	175	
t _{PHL} = (0.26 ns/pF) C _L + 47 ns		15	-	60	120	
Set, Set Pulse Width	t _W	5.0	200	80	-	ns
		10	100	40	-	
		15	70	30	-	
Reset, Reset Pulse Width	t _W	5.0	200	80	-	ns
		10	100	40	-	
		15	70	30	-	
Three–State Enable/Disable Delay	t _{PLZ} ,	5.0	-	150	300	ns
	t _{PHZ} ,	10	-	80	160	
	t _{PZL} ,	15	-	55	110	
	t _{PZH}					

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.




AC WAVEFORMS

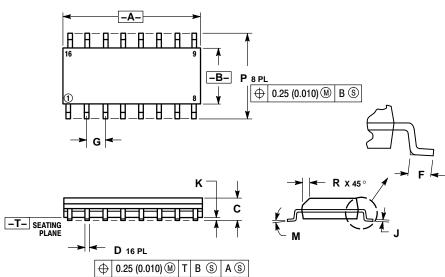
THREE-STATE ENABLE/DISABLE DELAYS

Set, Reset, Enable, and Switch Conditions for 3-State Tests

					MC14043B		MC14	044B
Test	Enable	S1	S2	Q	S	R	S	R
t _{PZH}	~	Open	Closed	А	V _{DD}	V _{SS}	V _{SS}	V _{DD}
t _{PZL}	7	Closed	Open	В	V _{SS}	V _{DD}	V_{DD}	V _{SS}
t _{PHZ}	~	Open	Closed	А	V _{DD}	V _{SS}	V _{SS}	V _{DD}
t _{PLZ}	~	Closed	Open	В	V _{SS}	V _{DD}	V _{DD}	V _{SS}

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC14043BDG	SOIC-16 (Pb-Free)	48 Units / Rail	
NLV14043BDG*	SOIC-16 (Pb-Free)	48 Units / Rail	
MC14043BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel	
NLV14043BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel	
MC14043BFELG	SOEIAJ–16 (Pb–Free)	2000 Units / Tape & Reel	

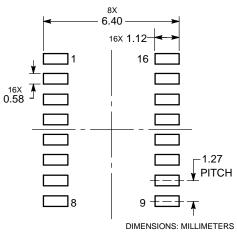

MC14044BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14044BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14044BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14044BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

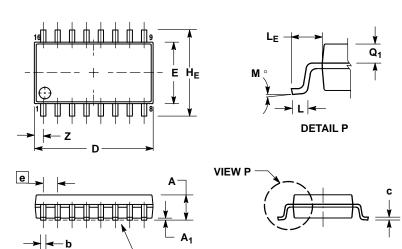
SOIC-16 **D SUFFIX** CASE 751B-05 ISSUE K



NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	1.27 BSC) BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
Μ	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-16 **F SUFFIX CASE 966 ISSUE A**

0.10 (0.004)

 \cap

NOTES:

- . DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2
- B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE 3. MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- (U.U.0) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

0.13 (0.005) 🕅

 \oplus

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative