5V Triple PECL Input to LVPECL Output Translator

Description

The MC100LVEL92 is a triple PECL input to LVPECL output translator. The device receives standard PECL signals and translates them to differential LVPECL output signals.

To accomplish the PECL to LVPECL level translation, the MC100LVEL92 requires three power rails. The V_{CC} supply is to be connected to the standard 5 V PECL supply, the LV $_{CC}$ supply is to be connected to the 3.3 V LVPECL supply, and Ground is connected to the system ground plane. Both the V_{CC} and LV $_{CC}$ should be bypassed to ground with 0.01 μF capacitors.

The PECL V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

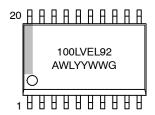
Features

- 500 ps Propagation Delays
- 5 V and 3.3 V Supplies Required
- ESD Protection: Human Body Model; >2 kV, Machine Model; >200 V
- The 100 Series Contains Temperature Compensation
- LVPECL Operating Range: LV_{CC} = 3.0 V to 3.8 V
- PECL Operating Range: $V_{CC} = 4.5 \text{ V}$ to 5.5 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or < GND + 1.3 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Pb = Level 1

Pb-Free = Level 3

For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index 28 to 34
- Transistor Count = 247 devices
- Pb-Free Packages are Available*


ON Semiconductor®

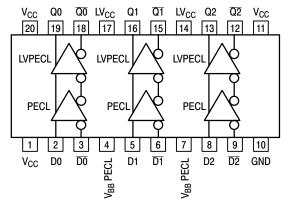
http://onsemi.com

SO-20 WB DW SUFFIX CASE 751D

MARKING DIAGRAM*

A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package


*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Dn, Dn Qn, Qn PECL V _{BB} LV _{CC} V _{CC} GND	PECL Inputs LVPECL Outputs PECL Reference Voltage Output LVPECL Power Supply PECL Power Supply Common Ground Rail

Warning: All V_{CC} , LV_{CC} , and GND pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout: SO-20 WB (Top View)

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Power Supply	GND = 0 V		8 to 0	V
LV _{CC}	LVPECL Power Supply	GND = 0 V		8 to 0	V
VI	PECL Input Voltage	GND = 0 V	$V_I \leq V_{CC}$	6 to 0	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	PECL V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			−65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	90 60	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. PECL INPUT DC CHARACTERISTICS V_{CC} = 5.0 V; LV_{CC} = 3.3 V; GND = 0 V Note 1)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IV _{CC}	PECL Power Supply Current			12			12			12	mA
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3515	3190		3525	3190		3525	mV
PECL V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (DIfferential) (Note 2) $V_{pp} < 500 \text{ mV} \\ V_{pp} \geqq 500 \text{ mV}$	1.3 1.5		4.8 4.8	1.2 1.4		4.8 4.8	1.2 1.4		4.8 4.8	V V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D	0.5 -600			0.5 -600			0.5 -600			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- Input parameters vary 1:1 with V_{CC}. V_{CC} can vary 4.5 V to 5.5 V.
 V_{IHCMR} min varies 1:1 with GND. V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1.0 V.

Table 4. LVPECL OUTPUT DC CHARACTERISTICS V_{CC} = 5.0 V; LV_{CC} = 3.3 V; GND = 0 V (Note 3)

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
ILV _{CC}	LVPECL Power Supply Current			20			20			21	mA
V _{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 3. Output parameters vary 1:1 with LV_{CC} . V_{CC} can vary 3.0 V to 3.8 V.
- 4. Outputs are terminated through a 50 Ω resistor to LV_{CC} 2.0 V.

Table 5. AC CHARACTERISTICS V_{CC} = 5.0 V; LV_{CC} = 3.3 V; GND = 0 V (Note 5)

				-40°C		25°C		85°C					
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
f _{max}	Maximum Toggle Frequency			TBD			TBD			TBD		GHz	
t _{PLH} t _{PHL}	Propagati D to Q	on Delay	Diff S.E.	490 440	590 590	690 740	510 460	610 610	710 760	530 480	630 630	730 780	ps
t _{SKEW}	Skew	Output-to-Output (N Part-to-Part (Diff) (N Duty Cycle (Diff) (N	lote 6)		20 20 25	100 200		20 20 25	100 200		20 20 25	100 200	ps
t _{JITTER}	Cycle-to-Cycle Jitter			TBD			TBD			TBD		ps	
V_{PP}	Input Swing (Note 8)		150		1000	150		1000	150		1000	mV	
t _r t _f	Output Rise/Fall Times Q (20% – 80%)		270		530	270		530	270		530	ps	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 5. LV_{CC} can vary 3.0 V to 3.8 V; V_{CC} can vary 4.5 V to 5.5 V. Outputs are terminated through a 50 Ω resistor to LV_{CC} 2.0 V.
- 6. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
- 7. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
- 8. V_{PP}(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.

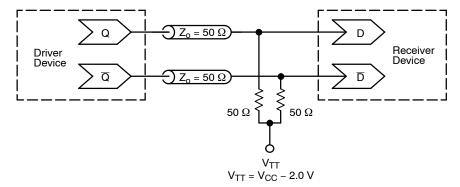


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL92DW	SO-20 WB	38 Units / Rail
MC100LVEL92DWG	SO-20 WB (Pb-Free)	38 Units / Rail
MC100LVEL92DWR2	SO-20 WB	1000 / Tape & Reel
MC100LVEL92DWR2G	SO-20 WB (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D – Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

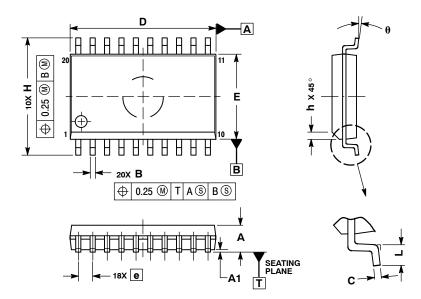
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SO-20 WB DW SUFFIX CASE 751D-05 **ISSUE G**

NOTES

- 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.

	MILLIMETERS							
DIM	MIN	MAX						
Α	2.35	2.65						
A1	0.10	0.25						
В	0.35	0.49						
С	0.23	0.32						
D	12.65	12.95						
Е	7.40	7.60						
е	1.27	BSC						
Н	10.05	10.55						
h	0.25	0.75						
L	0.50	0.90						
θ	0 °	7 °						

ECLinPS are registered trademarks of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC100LVEL92/D