MC74LVX4245

Dual Supply Octal
 Translating Transceiver

with 3-State Outputs

The 74LVX4245 is a 24 -pin dual-supply, octal translating transceiver that is designed to interface between a 5.0 V bus and a 3.0 V bus in a mixed $3.0 \mathrm{~V} / 5.0 \mathrm{~V}$ supply environment such as laptop computers using a 3.3 V CPU and 5.0 V LCD display. The A port interfaces with the 5 V bus; the B port interfaces with the 3.0 V bus.

The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}}$) input determines the direction of data flow. Transmit (active-High) enables data from the A port to the B port. Receive (active-Low) enables data from the B port to the A port. The Output Enable ($\overline{\mathrm{OE}}$) input, when High, disables both A and B ports by placing them in 3 -State.

Features

- Bi-directional Interface Between 5.0 V and 3.0 V Buses
- Control Inputs Compatible with TTL Level
- 5.0 V Data Flow at A Port and 3.0 V Data Flow at B Port
- Outputs Source/Sink 24 mA at 5.0 V Bus and 12 mA at 3.0 V Bus
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- Available in SOIC and TSSOP Packages
- Functionally Compatible with the 74 Series 245
- $\mathrm{Pb}-$ Free Packages are Available*

Figure 1. 24-Lead Pinout
(Top View)

[^0]
ON Semiconductor ${ }^{\text {8 }}$

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Figure 2. Logic Diagram

INPUTS		OPERATING MODE Non-Inverting
$\overline{\mathrm{OE}}$	$\mathrm{T} / \overline{\mathbf{R}}$	
L	L	B Data to A Bus
L	H	A Data to B Bus
H	X	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable; For I CC reasons, Do Not Float Inputs

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Condition	Unit
$V_{C C A}$, $V_{\text {CCB }}$	DC Supply Voltage		-0.5 to +7.0		V
V_{1}	DC Input Voltage	$\overline{O E}, \mathrm{~T} / \mathrm{R}$	-0.5 to $\mathrm{V}_{\text {CCA }}+0.5$		V
$\mathrm{V}_{1 / \mathrm{O}}$	DC Input/Output Voltage	$\begin{aligned} & \mathrm{An} \\ & \mathrm{Bn} \end{aligned}$	-0.5 to $\mathrm{V}_{\text {CCA }}+0.5$		V
			-0.5 to $\mathrm{V}_{\text {CCB }}+0.5$		V
I_{IK}	DC Input Diode Current	OE, T/R	± 20	$\mathrm{V}_{1}<$ GND	mA
lok	DC Output Diode Current		± 50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND} ; \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current		± 50		mA
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC Supply Current	Per Output Pin Maximum Current at ICCA Maximum Current at ICCB	$\begin{gathered} \pm 50 \\ \pm 200 \\ \pm 100 \end{gathered}$		mA
TSTG	Storage Temperature Range		-65 to +150		${ }^{\circ} \mathrm{C}$
Latchup	DC Latchup Source/Sink Current		± 300		mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		Condition	$\mathrm{V}_{\text {cCA }}$	$\mathrm{V}_{\mathrm{ccB}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	Unit	
			Typ				ranteed Limits			
$\mathrm{V}_{\text {IHA }}$	Minimum HIGH Level Input Voltage	$\begin{array}{\|c} \mathrm{An}, \overline{\mathrm{OE}} \\ \mathrm{~T} / \mathrm{R} \end{array}$		$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \\ & \quad \text { or } \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\mathrm{IHB}}$		Bn	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 3.6 \\ & 2.7 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	
VILA	Maximum LOW Level Input Voltage	$\begin{gathered} \mathrm{An}, \overline{\mathrm{OE}} \\ \mathrm{~T} / \overline{\mathrm{R}} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq 0.1 \mathrm{~V} \\ & \quad \text { or } \\ & \geq \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	
$\mathrm{V}_{\text {ILB }}$		Bn		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.6 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	
$\mathrm{V}_{\text {OHA }}$	Minimum HIGH Level Output Voltage		$\begin{aligned} \mathrm{I}_{\text {OUT }} & =-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}} & =-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.86 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.76 \end{aligned}$	V	
$\mathrm{V}_{\text {OHB }}$			$\begin{aligned} \mathrm{I}_{\text {OUT }} & =-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}} & =-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & =-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.99 \\ 2.80 \\ 2.50 \\ \hline \end{array}$	$\begin{array}{r} 2.9 \\ 2.4 \\ 2.4 \\ \hline \end{array}$	$\begin{aligned} & 2.9 \\ & 2.4 \\ & 2.4 \end{aligned}$	V	
$\mathrm{V}_{\text {OLA }}$	Maximum LOW Level Output Voltage		$\begin{gathered} \mathrm{I}_{\text {OUT }}=100 \mathrm{\mu A} \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.002 \\ 0.18 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.44 \end{aligned}$	V	
$\mathrm{V}_{\text {OLB }}$			$\begin{aligned} \mathrm{I}_{\mathrm{OUT}} & =100 \mathrm{\mu A} \\ \mathrm{I}_{\mathrm{OL}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{LL}} & =8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{gathered} 0.002 \\ 0.1 \\ 0.1 \end{gathered}$	$\begin{array}{r} 0.10 \\ 0.31 \\ 0.31 \\ \hline \end{array}$	$\begin{aligned} & 0.10 \\ & 0.40 \\ & 0.40 \\ & \hline \end{aligned}$	V	

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		Condition	$\mathrm{V}_{\text {cCA }}$	$\mathrm{V}_{\text {ccB }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	Unit	
			Typ			Guaranteed Limits				
In	Max Input Leakage Current	$\begin{aligned} & \mathrm{OE}, \\ & \mathrm{~T} / \bar{R} \end{aligned}$		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}, \mathrm{GND}$	5.5	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$
Ioza	Max 3-State Output Leakage	An	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{OE}=\mathrm{V}_{\mathrm{CCA}} \\ \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCA}}, \mathrm{GND} \end{gathered}$	5.5	3.6		± 0.5	± 5.0	$\mu \mathrm{A}$	
Iozb	Max 3-State Output Leakage	Bn	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IL}} \\ \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CCA}} \\ \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CCB}}, \mathrm{GND} \end{gathered}$	5.5	3.6		± 0.5	± 5.0	$\mu \mathrm{A}$	
$\Delta_{\text {l }}$	Maximum I ${ }_{\text {CCT }}$ per Input	$\begin{array}{\|c} \mathrm{An}, \overline{\mathrm{OE}} \mathrm{~T} / \mathrm{R} \end{array}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-2.1 \mathrm{~V}$	5.5	3.6	1.0	1.35	1.5	mA	
		Bn	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCB }}-0.6 \mathrm{~V}$	5.5	3.6		0.35	0.5	mA	
$I_{\text {CCA }}$	Quiescent $\mathrm{V}_{\text {CCA }}$ Supply Current		$\begin{gathered} \mathrm{An}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} \\ \mathrm{Bn}=\mathrm{V}_{\mathrm{CCB}} \text { or } \mathrm{GND} \\ \overline{\mathrm{OE}=\mathrm{GND}} \\ \mathrm{~T} / \overline{\mathrm{R}}=\mathrm{GND} \end{gathered}$	5.5	3.6		8	80	$\mu \mathrm{A}$	
$I_{\text {CCB }}$	Quiescent $\mathrm{V}_{\text {CCB }}$ Supply Current		$\begin{gathered} \mathrm{An}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} \\ \mathrm{Bn}=\mathrm{V}_{\mathrm{CCB}} \text { or } \mathrm{GND} \\ \mathrm{OE}=\mathrm{GND} \\ \mathrm{~T} / \mathrm{R}=\mathrm{V}_{\mathrm{CCA}} \end{gathered}$	5.5	3.6		5	50	$\mu \mathrm{A}$	
Volpa VoLpB	Quiet Output Max Dynamic V_{OL}		Notes 1, 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$		V	
Volva VoLVB	Quiet Output Min Dynamic V_{OL}		Notes 1, 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline-1.2 \\ & -0.8 \end{aligned}$		V	
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IHDA}} \\ & \mathrm{~V}_{\mathrm{IHDB}} \end{aligned}$	Min HIGH Level Dynamic Input Voltage		Notes 1, 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		V	
$\mathrm{V}_{\mathrm{ILDA}}$ $\mathrm{V}_{\text {ILDB }}$	Max LOW Level Dynamic Input Voltage		Notes 1, 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		V	

1. Worst case package.
2. Max number of outputs defined as (n). Data inputs are driven $O \mathrm{~V}$ to V_{CC} level; one output at GND.
3. Max number of data inputs (n) switching. ($n-1$) inputs switching $O V$ to $V_{C C}$ level. Input under test switching: $V_{C C}$ level to threshold $\left(V_{I H D}\right)$, OV to threshold $\left(\mathrm{V}_{\mathrm{ILD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter		Condition	Typical	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\mathrm{V}_{\text {CCA }}=5.0 \mathrm{~V} ; \mathrm{V}_{\text {CCB }}=3.3 \mathrm{~V}$	4.5	pF
$\mathrm{C}_{\text {//O }}$	Input/Output Capacitance		$\mathrm{V}_{\text {CCA }}=5.0 \mathrm{~V} ; \mathrm{V}_{\text {CCB }}=3.3 \mathrm{~V}$	15	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Measured at 10MHz)	$\begin{aligned} & \mathrm{B} \rightarrow \mathrm{~A} \\ & \mathrm{~A} \rightarrow \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$	pF

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \mathrm{~V}_{\mathrm{CCA}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCB}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \mathrm{~V}_{\mathrm{CCA}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCB}}=2.7 \mathrm{~V} \end{gathered}$		Unit
		Min	Typ (Note 4)	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay A to B	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PHL }}$ tple	Propagation Delay B to A	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZL } \\ & \text { tpzH } \end{aligned}$	Output Enable Time OE to B	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZL } \\ & { }^{\text {tpzH }} \end{aligned}$	Output Enable Time OE to A	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time $\overline{\text { OE }}$ to B	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.3 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & t_{\text {tpLZ }} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { toshl } \\ & \text { tosLH } \end{aligned}$	Output to Output Skew, Data to Output (Note 5)		1.0	1.5		1.5	ns

4. Typical values at $\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$.
5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX4245DW	SOIC-24	30 Units / Rail
MC74LVX4245DWR2	SOIC-24	1000 Tape \& Reel
MC74LVX4245DWR2G	SOIC-24 (Pb-Free)	
MC74LVX4245DT	TSSOP-24*	1000 Tape \& Reel
MC74LVX4245DTR2	TSSOP-24*	62 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

Dual Supply Octal Translating Transceiver

The 74LVX4245 is a is a dual-supply device well capable of bidirectional signal voltage translation. This level shifting ability provides an excellent interface between low voltage CPU local bus and a standard $5.0 \mathrm{~V} \mathrm{I/O}$ bus. The device control inputs can be controlled by either the low voltage CPU and core logic or a bus arbitrator with 5.0 V I/O levels.

The LVX4245 is ideal for mixed voltage applications such as notebook computers using a 3.3 V CPU and 5.0 V peripheral devices.

Applications:

Mixed Mode Dual Supply Interface Solutions

The LVX4245 is designed to solve $3.0 \mathrm{~V} / 5.0 \mathrm{~V}$ interfaces when CMOS devices cannot tolerate I/O levels above their applied V_{CC}. If an I/O pin of a 3.0 V device is driven by a 5.0 V device, the P -Channel transistor in the 3.0 V device will conduct - causing current flow from the I/O bus to the 3.0 V power supply. The result may be destruction of the 3.0 V device through latchup effects. A current limiting resistor may be used to prevent destruction, but it causes speed degradation and needless power dissipation.

A better solution is provided in the LVX4245. It provides two different output levels that easily handle the dual voltage interface. The A port is a dedicated 5.0 V port; the B port is a dedicated 3.0 V port.

Since the LVX4245 is a ' 245 transceiver, the user may either use it for bidirectional or unidirectional applications. The center 20 pins are configured to match a ' 245 pinout. This enables the user to easily replace this level shifter with a 3.0 V ' 245 device without additional layout work or remanufacture of the circuit board (when both buses are 3.0 V).

Figure 3. 3.3V/5V Interface Block Diagram

Powering Up the LVX4245

When powering up the LVX4245, please note that if the $\mathrm{V}_{\mathrm{CCB}}$ pin is powered-up well in advance of the $\mathrm{V}_{\text {CCA }}$ pin, several milliamps of either $\mathrm{I}_{\mathrm{CCA}}$ or $\mathrm{I}_{\mathrm{CCB}}$ current will result. If the $\mathrm{V}_{\text {CCA }}$ pin is powered-up in advance of the $\mathrm{V}_{\mathrm{CCB}}$ pin then only nanoamps of Icc current will result. In actuality the $\mathrm{V}_{\mathrm{CCB}}$ can be powered "slightly" before the $\mathrm{V}_{\mathrm{CCA}}$ without the current penalty, but this "setup time" is dependent on the power-up ramp rate of the V_{CC} pins. With a ramp rate of approximately $50 \mathrm{mV} / \mathrm{ns}(50 \mathrm{~V} / \mu \mathrm{s})$ a 25 ns setup time was observed ($\mathrm{V}_{\mathrm{CCB}}$ before $\mathrm{V}_{\mathrm{CCA}}$). With a $7.0 \mathrm{~V} / \mu \mathrm{s}$ rate, the setup time was about 140 ns . When all is said and done, the safest powerup strategy is to simply power $\mathrm{V}_{\mathrm{CCA}}$ before $\mathrm{V}_{\mathrm{CCB}}$. One more note: if the $\mathrm{V}_{\mathrm{CCB}}$ ramp rate is faster than the $V_{\text {CCA }}$ ramp rate then power problems might still occur, even if the $\mathrm{V}_{\mathrm{CCA}}$ powerup began prior to the $\mathrm{V}_{\mathrm{CCB}}$ powerup.

Figure 4. MC74LVX4245 Fits Into a System with 3V Subsystem and 5V Subsystem

Figure 5. MC74LVX4245 Pin Arrangement Is Compatible to $\mathbf{2 0}$-Pin 74 Series '245s

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES

$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 6. AC Waveforms

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PHZ }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 7. Test Circuit

PACKAGE DIMENSIONS

SOIC-24 DW SUFFIX
CASE 751E-04
ISSUE E

NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982 .
2. CONTROLLING DIMENSION: MILLIMETER.
3. CONTROLLING DIMENSION: MILLIMETER.
4. DIMENSIONS A AND B DO NOT INCLUDE

DIMENSIONS A AND B
MOLD PROTRUSION.
MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	15.25	15.54	0.601	0.612		
B	7.40	7.60	0.292	0.299		
C	2.35	2.65	0.093	0.104		
D	0.35	0.49	0.014	0.019		
F	0.41	0.90	0.016	0.035		
G	1.27		BSC	0.050		BSC
J	0.23	0.32	0.009	0.013		
K	0.13	0.29	0.005	0.011		
M	0°	8°	0°	8°		
P	10.05	10.55	0.395	0.415		
R	0.25	0.75	0.010	0.029		

PACKAGE DIMENSIONS

TSSOP-24

DT SUFFIX
CASE 948H-01
ISSUE A

Abstract

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

