74ABT16373 16-Bit Transparent D-Type Latch with 3-STATE Outputs

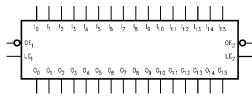
74ABT16373 16-Bit Transparent D-Type Latch with 3-STATE Outputs

General Description

FAIRCHILD

SEMICONDUCTOR

The ABT16373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear transparent to the data when the Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the outputs are in high Z state.


Features

- Separate control logic for each byte
- 16-bit version of the ABT373
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Guaranteed latch-up protection

Ordering Code:

Order Number	Package Number	Package Description				
74ABT16373CSSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide				
74ABT16373CMTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide						
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.						

Logic Symbol

Pin Descriptions

Pin Names	Description
OE n	Output Enable Input (Active LOW)
LEn	Latch Enable Input
D ₀ -D ₁₅	Data Inputs
O ₀ -O ₁₅	Outputs

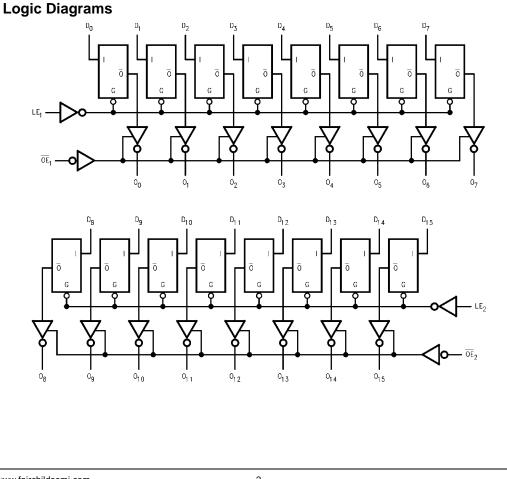
_		∇		
OE ₁	1		48	— L E ₁
°0 —	2		47	— D ₀
0 ₁ —	3		46	— D ₁
GND —	4		45	— GND
0 ₂ —	5		44	- D ₂
0 ₃ —	6		43	- D3
v _{cc} —	7		42	- v _{cc}
0 ₄ —	8		41	- D4
0 ₅ —	9		40	— D ₅
gnd —	10		39	— GND
0 ₆ —	11		38	— D ₆
0 ₇ —	12		37	- D ₇
0 ₈ —	13		36	— D ₈
0 ₉ —	14		35	— D ₉
gnd —	15		34	— GND
0 ₁₀ —	16		33	- D ₁₀
0 ₁₁ —	17		32	- D _{1 1}
v _{cc} —	18		31	- v _{cc}
0 ₁₂ —	19		30	- D ₁₂
0 ₁₃ —	20		29	- D _{1 3}
GND 🗕	21		28	— GND
0 ₁₄ —	22		27	- D ₁₄
0 ₁₅ —	23		26	- D ₁₅
0E2 -	24		25	LE2

Connection Diagram

Functional Description

The ABT16373 contains sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the D_n enters the latches. In this condition the latches are transparent, i.e., a latch output will change states each time its D input changes. When LE_n is LOW, the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE_n. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Tables


	Inputs		Outputs
LE ₁	OE ₁	D ₀ –D ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	х	(Previous)
	Inputs		Outputs
LE ₂	Inputs OE ₂	D ₈ –D ₁₅	Outputs O ₈ -O ₁₅
LE ₂ X		D ₈ –D ₁₅ X	•
_	OE ₂		0 ₈ –0 ₁₅
x	OE ₂	Х	0 ₈ -0 ₁₅ Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

Previous = previous output prior to HIGH-to-LOW transition of LE

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-	~
Storage Temperature	-65°C to +150°C	С
Ambient Temperature under Bias	-55°C to +125°C	F
Junction Temperature under Bias	-55°C to +150°C	s
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V	N
Input Voltage (Note 2)	-0.5V to +7.0V	
Input Current (Note 2)	-30 mA to +5.0 mA	
Voltage Applied to Any Output		
in the Disabled or		
Power-Off State	-0.5V to +5.5V	
in the HIGH State	–0.5V to V _{CC}	
Current Applied to Output		
in LOW State (Max)	twice the rated I _{OL} (mA)	
DC Latchup Source Current: OE Pin	–350 mA	
(Across Comm Operating Range)		Not
Other Pins	–500 mA	ma uno
Over Voltage Latchup (I/O)	10V	Not

Recommended Operating Conditions

Free Air Ambient Temperature	-40°C to +85°C
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V / \Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

74ABT16373

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{ОН}	Output HIGH Voltage	2.5				Min	I _{OH} = -3 mA
		2.0				IVIIII	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage			0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current			1	μA	Max	V _{IN} = 2.7V (Note 3)
				1	μΛ	IVIAA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	V _{IN} = 7.0V
IIL	Input LOW Current			-1	μA	Max	V _{IN} = 0.5V (Note 3)
				-1	μΛ	IVIAA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA
							All Other Pins Grounded
I _{OZH}	Output Leakage Current			10	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
I _{OZL}	Output Leakage Current			-10	μΑ	0 – 5.5V	$V_{OUT} = 0.5V; \ \overline{OE} = 2.0V$
I _{OS}	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current			2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			62	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			2.0	mA	Max	$\overline{OE} = V_{CC}$
							All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
	Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
	Outputs 3-STATE			2.5	mA		Data Input V _I = V _{CC} – 2.1V
							All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC} No Load				mA/	Maria	Outputs Open, LE = V _{CC}
	(Note 3)			0.15	MHz	Max	OE = GND, (Note 4)
							One Bit Toggling, 50% Duty Cycle

Note 3: Guaranteed, but not tested.

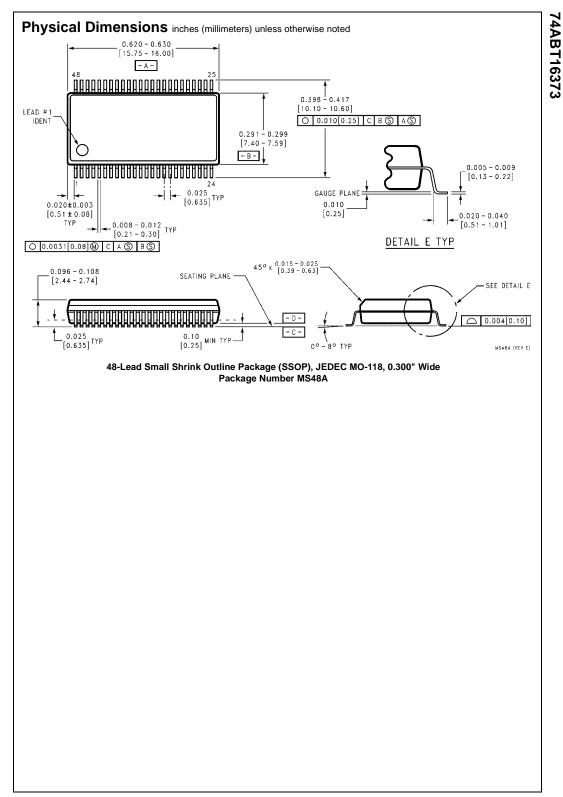
Note 4: For 8 bits toggling, $I_{CCD} < 0.8$ mA/MHz.

74ABT16373

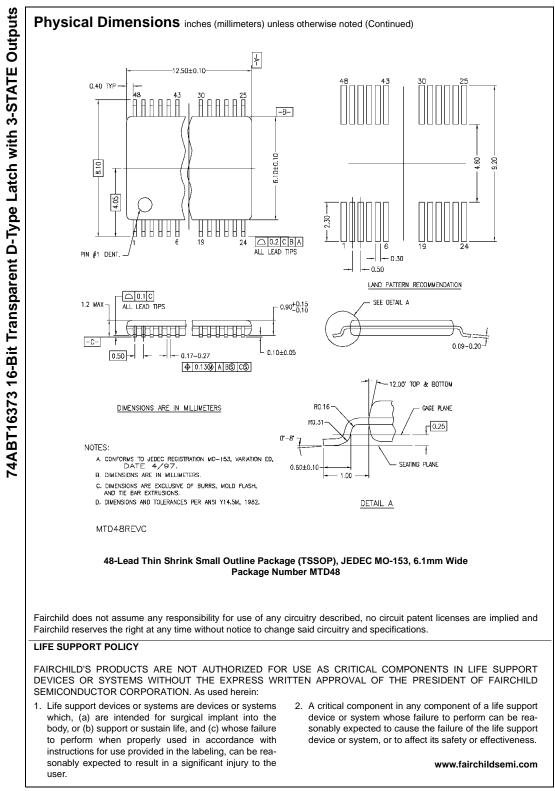
AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	I
t _{PLH}	Propagation Delay	1.4		5.6	1.4	5.6	
t _{PHL}	D _n to O _n	1.4		5.6	1.4	5.6	ns
t _{PLH}	Propagation Delay	1.7		6.0	1.7	6.0	
t _{PHL}	LE to O _n	1.7		5.5	1.7	5.5	ns
t _{PZH}	Output Enable Time	1.1		6.1	1.1	6.1	-
t _{PZL}		1.5		5.6	1.5	5.6	ns
t _{PHZ}	Output Disable Time	2.4		7.1	2.4	7.1	
t _{PLZ}		1.6		6.5	1.6	6.5	ns

AC Operating Requirements


(SOIC and SSOP Packages) $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V$ to 5.5V $V_{CC} = +5.0V$ Symbol Units Parameter $C_L = 50 \text{ pF}$ $C_L = 50 \ pF$ Тур Min Max Min Max 100 MHz Maximum Toggle Frequency f_{TOGGLE} Setup Time, HIGH 1.5 t_S(H) 1.5 ns t_S(L) or LOW D_n to LE 1.5 1.5 t_H(H) Hold Time, HIGH 1.0 1.0 ns or LOW D_n to LE t_H(L) 1.0 1.0 t_W(H) Pulse Width, 3.0 3.0 ns LE HIGH

Capacitance


Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	11	pF	$V_{CC} = 5.0V$

Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

www.fairchildsemi.com

5

