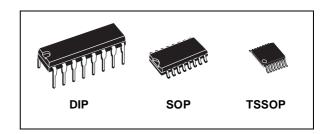


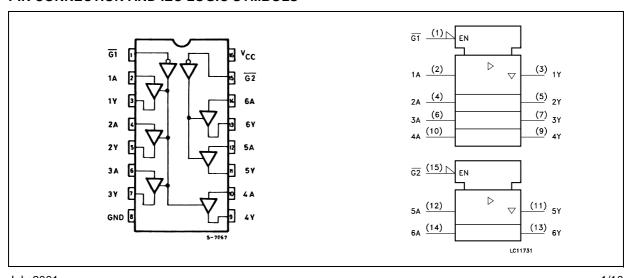
M74HC367


HEX BUS BUFFER WITH 3 STATE OUTPUT NON INVERTING

- HIGH SPEED:
 - t_{PD} = 9ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 6mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 367

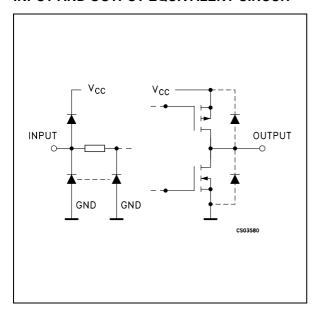
The M74HC367 is an high speed CMOS HEX BUS BUFFER 3-STATE OUTPUTS fabricated with silicon gate $\,\mathrm{C}^2\mathrm{MOS}$ technology.

This device contains six buffers, four buffers are controlled by an enable input (G1) and the other two buffers are controlled by the other enable input ($\overline{G2}$); the outputs of each buffer group are


ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC367B1R	
SOP	M74HC367M1R	M74HC367RM13TR
TSSOP		M74HC367TTR

enabled when $\overline{G1}$ and/or $\overline{G2}$ inputs are held low, and when held high, these outputs are disabled in a high-impedance state.


All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

	PIN No	SYMBOL	NAME AND FUNCTION				
	1, 15	G1, G2	3 State Output Enable Input				
	2, 4, 6, 10, 12, 14	1A to 6A	Data Inputs				
	3, 5, 7, 9, 11, 13	1Y to 6Y	Data Outputs				
Ī	8	GND	Ground (0V)				
	16	V _{CC}	Positive Supply Voltage				

TRUTH TABLE

INP	OUTPUTS	
G	An	Yn
L	L	L
L	Н	Н
Н	Х	Z

X: Don't Care Z: High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 35	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

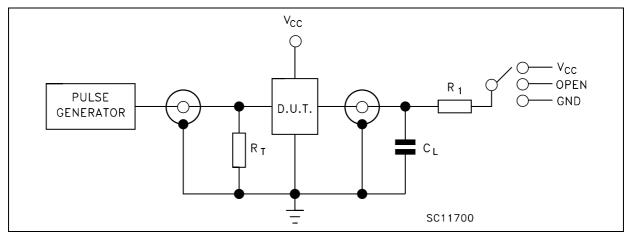
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

		٦	Test Condition		Value							
Symbol	Parameter	V _{CC}	Vcc		T _A = 25°C			-40 to 85°C		-55 to 125°C		
			(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5			
	Voltage	4.5		3.15			3.15		3.15		V	
		6.0		4.2			4.2		4.2			
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5		
	Voltage	4.5				1.35		1.35		1.35	V	
		6.0				1.8		1.8		1.8		
V_{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9			
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4			
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V	
		4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10			
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60			
V_{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1		
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1		
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V	
		4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40		
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40		
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ	
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ	
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ	

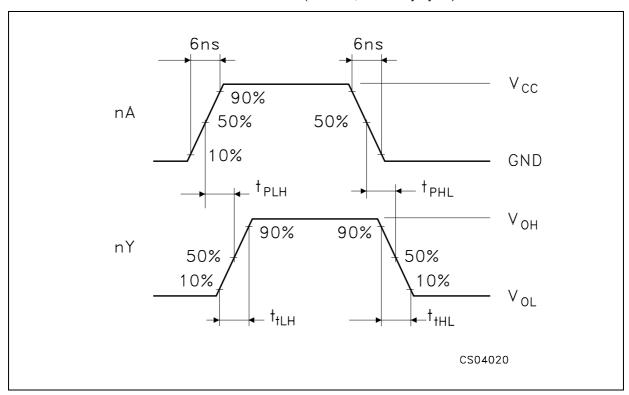
AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

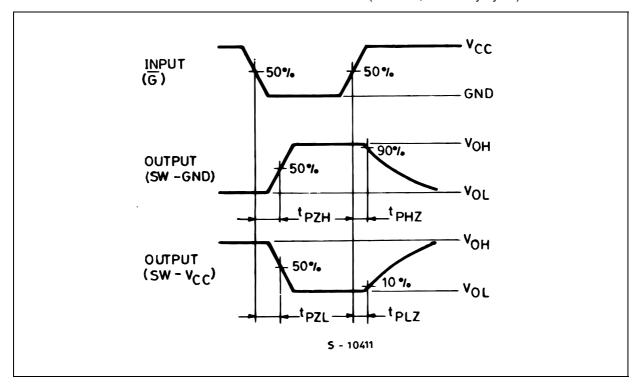

		1	est Co	ondition	Value							
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
İ		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90	
	Time	4.5	50			7	12		15		18	ns
	6.0				6	10		13		15		
t _{PLH} t _{PHL}	Propagation Delay	2.0				30	85		105		130	
Time	4.5	50			10	17		21		26	ns	
	6.0				9	14		18		22		
		2.0	150		42 105 130		160					
		4.5				14	21		26		32	ns
		6.0				12	18		22		27	
t _{PZL} t _{PZH}	High Impedance	2.0				36	90		115		135	
	Output Enable	4.5	50	$R_L = 1 \text{ K}\Omega$		11	18		23		27	ns
	Time	6.0				9	15		20		23	
		2.0				49	110		140		165	ns
		4.5	150	$R_L = 1 \text{ K}\Omega$		15	22		28		33	
		6.0				13	19		24		28	
t _{PLZ} t _{PHZ}	High Impedance	2.0				32	95		120		145	
Output Disable		4.5	50	$R_L = 1 \text{ K}\Omega$		14	19		24		29	ns
	Time	6.0				12	16		20		25	

CAPACITIVE CHARACTERISTICS

		Test Condition		Value								
Symbol	Parameter	v _{cc}	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)					33						pF

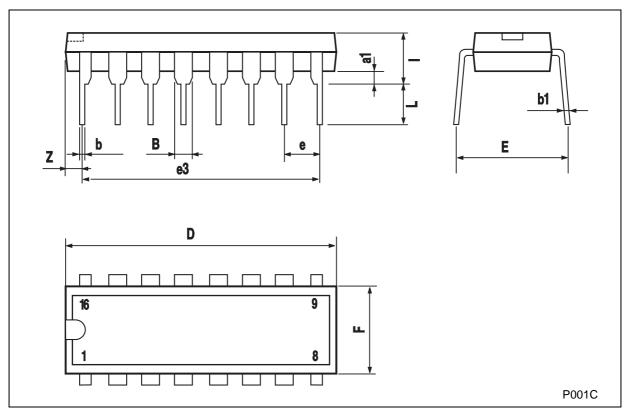
¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/6$ (per Channel)


TEST CIRCUIT

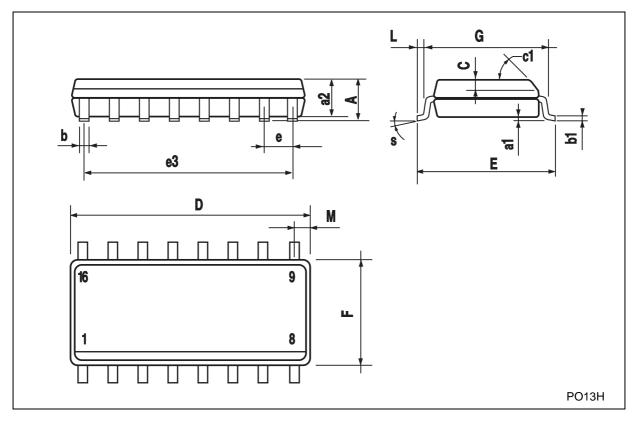

t _{PLH} , t _{PHL}		Open			
t _{PZL} , t _{PLZ}		V _{CC}			
t _{PZH} , t _{PHZ}		GND			

 C_L = 50pF/150pF or equivalent (includes jig and probe capacitance) R_1 = 1KΩ or equivalent R_T = Z_{OUT} of pulse generator (typically 50Ω)

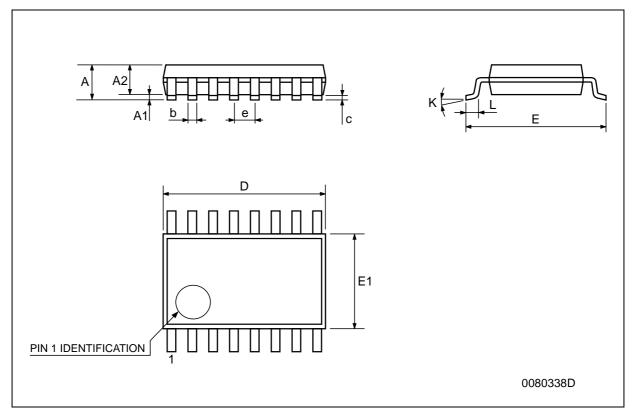
WAVEFORM 1: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)



WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)


Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		


SO-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)	•	
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
еЗ		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (max.)	·	

TSSOP16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

© http://www.st.com

47/