3.3 V/5 V ECL 6-Bit Differential Register with Master Reset

MC10EP451, MC100EP451

Description

The MC10/100EP451 is a 6-bit fully differential register with common clock and single-ended Master Reset (MR). It is ideal for very high frequency applications where a registered data path is necessary.

All inputs have a 75 k Ω pulldown resistor internally. Differential inputs have an override clamp. Unused differential register inputs can be left open and will default LOW. When the differential inputs are forced to < V_{EE} + 1.2 V, the clamp will override and force the output to a default state. When in the default state, and since the flip–flop is edge triggered, the output reaches a determined, but not predicted, valid state.

The positive transition of CLK (pin 4) will latch the registers. Master Reset (MR) HIGH will asynchronously reset all registers forcing Q outputs to go LOW.

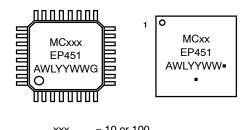
The 100 Series contains temperature compensation.

Features

- 450 ps Typical Propagation Delay
- Maximum Frequency > 3.0 GHz Typical
- Asynchronous Master Reset
- 20 ps Skew Within Device, 35 ps Skew Device-To-Device
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 5.5 V With $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ With $V_{EE} = -3.0 V$ to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are Pb-Free and are RoHS Compliant

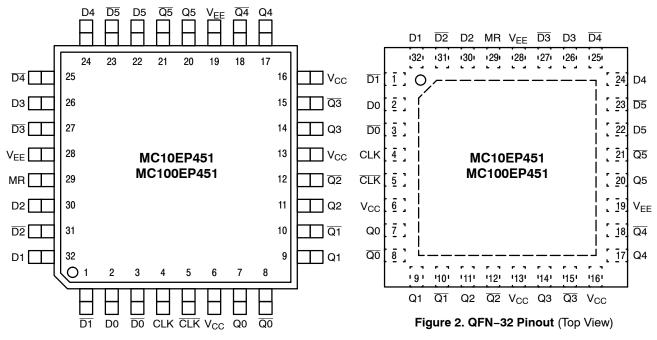
ON Semiconductor®

www.onsemi.com



CASE 561AB

XXX	
А	= Assembly Location
WL	= Wafer Lot
YY	= Year
WW	= Work Week
G or ∎	= Pb-Free Package


(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EP451FAG	LQFP-32 (Pb-Free)	250 Units / Tube
MC100EP451FAG	LQFP-32 (Pb-Free)	250 Units / Tube
MC100EP451FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel
MC100EP451MNG	QFN-32 (Pb-Free)	72 Units / Tube
MC100EP451MNR4G	QFN-32 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

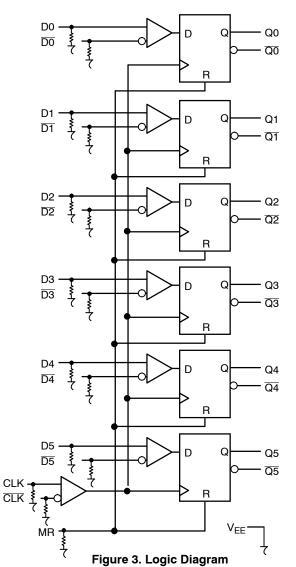

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. LQFP-32 Pinout (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D [0:5]*, D [0:5]*	ECL Differential Data Inputs
MR*	ECL Master Reset Input
CLK*, CLK*	ECL Differential Clock Inputs
Q [0:5], <u>Q</u> [0:5]	ECL Differential Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP for QFN–32, only	The Exposed Pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to V _{EE} .

* Pins will default LOW when left open.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 2 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
LQFP-32 QFN-32	Level 2 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	919 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
I _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	LQFP-32 LQFP-32	80 55	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	LQFP-32	12 to 17	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		00			, ,	25°C			0F°C		
			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	80	95	125	80	95	125	80	95	125	mA
V _{OH}	Output HIGH Voltage (Note 3)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 3)	1365	1490	1615	1430	1555	1680	1470	1615	1740	mV
VIH	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1430		1755	1490		1815	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

Table 4. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2)

Table 5. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 5)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	80	95	125	80	95	125	80	95	125	mA
V _{OH}	Output HIGH Voltage (Note 3)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 3)	3065	3190	3315	3130	3255	3380	3170	3315	3440	mV
VIH	Input HIGH Voltage (Single-Ended)	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3065		3390	3130		3455	3190		3515	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 6. 10EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 6)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	80	95	125	80	95	125	80	95	125	mA
VOH	Output HIGH Voltage (Note 3)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 3)	-1935	-1810	-1685	-1870	-1745	-1620	-1830	-1685	-1560	mV
VIH	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
١ _{١L}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

 Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
All loading with 50 Ω to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.

6. Input and output parameters vary 1:1 with V_{CC} .

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	85	105	135	85	105	135	85	105	135	mA
V _{OH}	Output HIGH Voltage (Note 8)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 8)	1305	1480	1605	1305	1480	1605	1305	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
VIL	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

Table 7. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 7)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to –2.2 V.

8. All loading with 50 Ω to V_{CC} – 2.0 V.

9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 8. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 10)

			-40°C	_		25°C	_	85°C Min Typ Max 85 105 135 3855 3980 4105 3005 3180 3305 3775 4120 3005 5.0			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	85	105	135	85	105	135	85	105	135	mA
V _{OH}	Output HIGH Voltage (Note 11)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 11)	3005	3180	3305	3005	3180	3305	3005	3180	3305	mV
VIH	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
VIL	Input LOW Voltage (Single-Ended)	3005		3375	3005		3375	3005		3375	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

10. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.

11. All loading with 50 Ω to V_{CC} – 2.0 V. 12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	85	105	135	85	105	135	85	105	135	mA
V _{OH}	Output HIGH Voltage (Note 14)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 14)	-1995	-1820	-1695	-1995	-1820	-1695	-1995	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 15)	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 9. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 V$, $V_{EE} = -5.5 V$ to -3.0 V (Note 13)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

13. Input and output parameters vary 1:1 with $\ensuremath{\mathsf{V_{CC}}}$.

14. All loading with 50 Ω to V_{CC} – 2.0 V. 15. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

				-40°C			25°C			85°C		
Symbol	Characteris	tic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTpp}	Output Voltage Amplitude (Figure 4) (Note 17)	e @ 3 GHz	540	670		520	650		450	580		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	CLK to Q, \overline{Q} MR to Q, \overline{Q}	330 430	430 530	530 630	350 450	450 550	550 650	390 490	490 590	590 690	ps
t _{RR}	Reset Recovery	MR to CLK	240	145		250	150		260	160		ps
t _S t _H	Setup Time Hold Time	D to CLK CLK to D	80 80	40 40		80 80	40 40		80 80	40 40		ps
t _{PW}	Minimum Pulse Rate	MR	400			400			400			ps
t _{SKEW}	Within–Device Skew (No Device–To–Device Skew			20 35	40 100		20 35	40 100		20 35	40 100	
^ţ JITTER	CLOCK Random Jitter (F @ \leq 3.0 GHz (Figure 4)	RMS)		0.2	1		0.2	1		0.2	1	ps
t _r t _f	Output Rise/Fall Times (20% – 80%)	Q, <u>Q</u>	100 100	150 150	250 250	110 110	160 160	260 260	130 130	180 180	280 280	ps

Table 10. AC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.0 V to -5.5 V or V_{CC} = 3.0 V to 5.5 V; V_{EE} = 0 V (Note 16)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

16. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

17. V_{OL} and V_{OH} specifications not guaranteed for F_{max} testing.

18. Skew is measured between outputs under identical transitions and conditions on any one device.

19. Device-To-Device skew for identical transitions at identical V_{CC} levels.

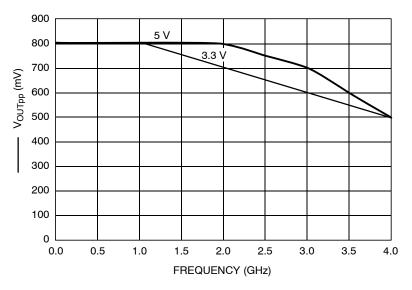
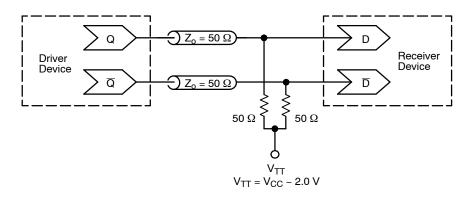
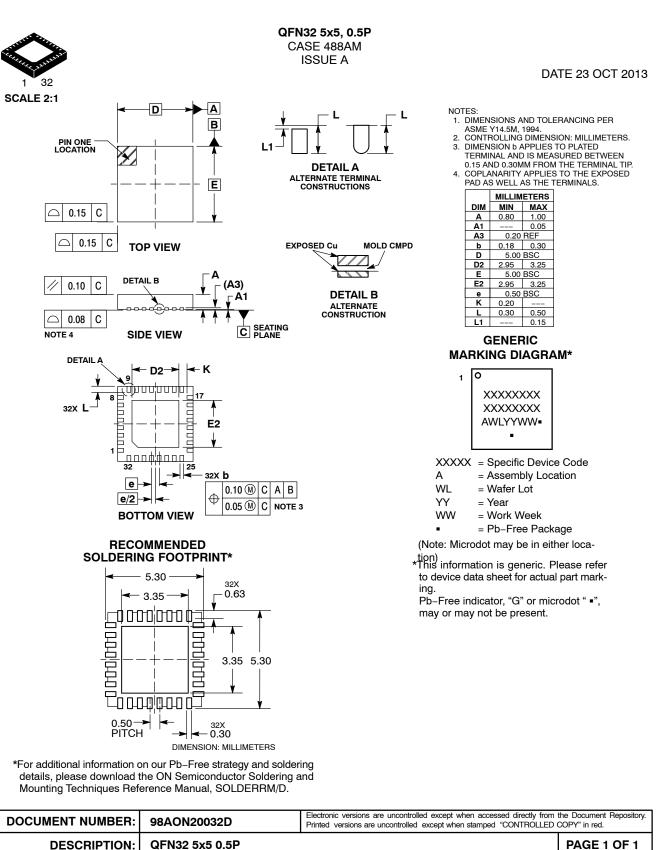


Figure 4. F_{max} Typical

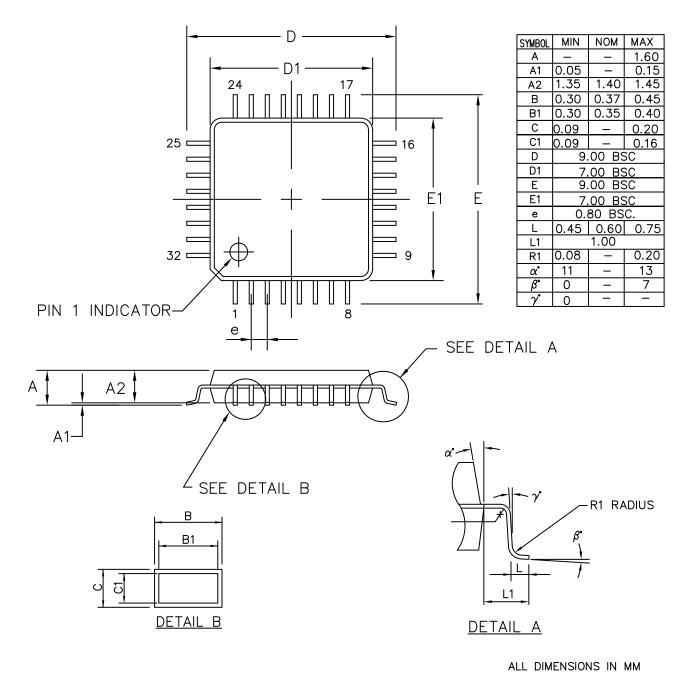



Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques		
AN1406/D	-	Designing with PECL (ECL at +5.0 V)		
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit		
AN1504/D	-	Metastability and the ECLinPS Family		
AN1568/D	-	Interfacing Between LVDS and ECL		
AN1642/D	-	The ECL Translator Guide		
AND8001/D	-	Odd Number Counters Design		
AND8002/D	-	Marking and Date Codes		
AND8020/D	-	Termination of ECL Logic Devices		
AND8066/D	-	Interfacing with ECLinPS		
AND8090/D	-	AC Characteristics of ECL Devices		

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LQFP-32, 7x7 CASE 561AB-01 ISSUE O

DATE 19 JUN 2008

DOCUMENT NUMBER:	98AON30893E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	32 LEAD LQFP, 7X7		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥