

3.3 V powered, 15 kV ESD protected, up to 12 Mbps true RS-485/RS-422 transceiver

SO8

Features

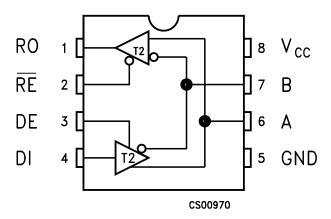
- ESD protection
 - ±15 kV human body model
 - ±8 kV IEC 1000-4-2 contact discharge
- Operates from a single 3.3 V supply no charge pump required
- Interoperable with 5 V logic
- 1 μA low current shutdown mode max.
- · Guaranteed 12 Mbps data rate
- -7 to 12 common mode input voltage range
- · Half duplex versions available
- Industry standard 75176 pinout
- Current limiting and thermal shutdown for driver overload protection
- Guaranteed high receiver output state for floating, shorted or terminated inputs with no signal present
- · Allows up to 64 transceivers on the bus

Description

lectronics sales office

The ST1480US is ± 15 kV ESD protected, 3.3 V low power transceiver for RS-485 and RS-422 communications. The device contains one driver and one receiver in half duplex configuration. The ST1480US transmits and receives at a guaranteed data rate of at least 12 Mbps. All transmitter outputs and receiver inputs are protected to ± 15 kV using human body model. Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state.

The ST1480US input has a true fail-safe feature that guarantees a logic high output if both inputs are open circuit, shorted together or in the presence of a termination with no signal on the bus.


Product status link

ST1480US

1 Pin configuration

Figure 1. Pin connections

Table 1. Pin description

Pin	Symbol	Name and function
1	RO	Receiver output. If A>B by 200 mV, RO is high; if A< B by 200 mV, RO is low.
2	RE	Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is high. If RE is high and DE is low, the device enters a low power shutdown mode.
3	DE	Driver output enable. The driver outputs are enabled by bringing DE high. They are high impedance when DE is low. If RE is high DE is low, the device enters a low-power shutdown mode. If the driver outputs are enabled, the part functions as line driver, while they are high impedance, it functions as line receivers if RE is low.
4	DI	Driver input. A low on DI forces output A low and output B high. Similarly, a high on DI forces output A high and output B low.
5	GND	Ground
6	Α	Non-inverting receiver input and non-inverting driver output.
7	В	Inverting receiver input and inverting driver output.
8	VCC	Supply voltage: VCC=3 V to 3.6 V.

DS13697 - Rev 1 page 2/21

2 Truth tables

Table 2. Truth table (driver)

	Inputs			puts	Mode		
RE	DE	DI	В	Α	Mode		
Х	Н	Н	L	Н	Normal		
X	Н	L	Н	L	Normal		
L	L	Х	Z	Z	Normal		
Н	L	Х	Z	Z	Shutdown		

Note: X= do not care; Z= high impedance

		Inputs	Output	Mode
RE	DE	A-B	RO	Wode
L	L	≥+0.2V	Н	Normal
L	L	≤-0.2V	L	Normal
L	L	Inputs open	Н	Normal
L	L	Inputs shorted	Н	Normal
Н	L	X	Z	Shutdown

Note: X= do not care; Z= high impedance

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol		Parameter			
V _{CC}	Supply voltage		7	V	
VI	Control input voltage (RE, DE)		-0.3 to 7	V	
V _{DI}	Driver input voltage (DI)	Driver input voltage (DI)			
V_{DO}	Driver output voltage (A, B)	Driver output voltage (A, B)			
V _{RI}	Receiver input voltage (A, B)		± 14	V	
V _{RO}	Receiver output voltage (RO)	Receiver output voltage (RO)		V	
ESD	ESD protection voltage	Human body model	±15	kV	
ESD	ESD protection voltage	IEC-1000-4-2 contact discharge	±8	, KV	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

4 Electrical characteristics

 V_{CC} = 3 V to 3.6 V, T_A = -40 to 85 °C, unless otherwise specified. Typical values are referred to T_A = 25 °C).

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions			Тур.	Max.	Unit
louppuy	V _{CC} power supply current	No Load,	DE = V_{CC} , \overline{RE} = 0 V or V_{CC}		1.3	2.2	mA
ISUPPLY	v.C.C bower subbiy current	DI = 0 V or V _{CC}	DE=0 V, RE=0 V		1.2	1.9	mA
I _{SHDN}	Shutdown supply current	DE = 0 V, RE = V_{CO}	DE = 0 V, RE = V _{CC} , DI = 0 V or V _{CC}		0.002	1	μA

Table 5. Logic input electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
V _{IL}	Input logic threshold low	DE, DI, RE				0.8	V
V _{IH}	Input logic threshold high	DE, DI, RE		2			V
I _{IN1}	Logic input current	DE, DI, RE				±2.0	μΑ
livio	Input current (A, B)	DE=0 V, V _{CC} =0 or 3.6 V				1	mA
I _{IN2}	input current (A, D)	52 0 v, v _{CC} 0 01 0.0 v	VIN = -7 V			-0.8	mA

Table 6. Transmitter electrical characteristics

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
		R _L = 100 Ω (RS-422) (Figure 1. Pin connections)	2			V
V _{OD}	Differential drive output	R_L = 54 Ω (RS-485) (Figure 1. Pin connections)	1.5			V
		R_L = 60 Ω (RS-485) (Figure 2. Driver and V_{OC} test load)	1.5			V
ΔV _{OD}	Change in magnitude of driver differential output voltage for complementary output states (1)	R _L = 54 Ω or 100 Ω (Figure 1. Pin connections)			0.2	V
V _{OC}	Driver common mode output voltage	R_L = 54 Ω or 100 Ω (Figure 1. Pin connections)			3	V
ΔV _{OC}	Change in magnitude of driver common mode output voltage ⁽¹⁾	R _L = 54 Ω or 100 Ω (Figure 1. Pin connections)			0.2	V
I _{OSD}	Driver short-circuit output current				±250	mA

^{1.} \triangle VOD and \triangle VOC are the changes in VOD and VOC, respectively, when the DI input changes state.

DS13697 - Rev 1 page 5/21

Table 7. Receiver electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{TH}	Receiver differential threshold voltage	V _{CM} =-7 V to 12 V, DE = 0	-0.2		-0.015	V
ΔV_{TH}	Receiver input hysteresis	V _{CM} =0 V		30		μV
V _{OH}	Receiver output high voltage	I_{OUT} = -4 mA, V_{ID} = 200 mV, (Figure 8. Drive enable and disable times waveforms)	2			V
V _{OL}	Receiver output low voltage	I _{OUT} = 4 mA, V _{ID} = -200 mV, (Figure 3. Driver V _{OD} with varying common mode voltage test load)			0.4	V
I _{OZR}	3-state (high impedance) output current at receiver	V_{CC} = 3.6 V, V_{O} = 0 V to V_{CC}			±1	μA
R _{RIN}	Receiver input resistance	V _{CM} = -7 V to 12 V	24			kΩ
I _{OSR}	Receiver short-circuit current	V _{RO} = 0 V to V _{CC}	7		60	mA

Table 8. Driver switching characteristics

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
D_R	Maximum data rate		12	15		Mbps
t _{DD}	Differential output delay	R_L = 60 Ω, C_L = 15 pF, (Figure 4. Receiver V_{OH} and V_{OL} test circuit and Figure 5. Drive differential output delay transition time test circuit)		18	30	ns
t _{TD}	Differential output transition time	R_L = 60 Ω, C_L = 15 pF, (Figure 4. Receiver V_{OH} and V_{OL} test circuit and Figure 5. Drive differential output delay transition time test circuit)		12	20	ns
t _{PLH} t _{PHL}	Propagation delay	R_L = 27 Ω , C_L = 15 pF, (Figure 8. Drive enable and disable times waveforms and Figure 9. Drive propagation time test circuit)		18	30	ns
t _{PDS}	t _{PLH} - t _{PHL} propagation delay skew ⁽¹⁾	R_L = 27 Ω , C_L = 15 pF, (Figure 8. Drive enable and disable times waveforms and Figure 9. Drive propagation time test circuit)		2	5	ns
t _{PZL}	Output enable time	R _L = 110 Ω , (Figure 10. Drive propagation time waveform and Figure 11. Drive enable and disable times test circuit (R _L = 110 Ω))		19	35	ns
t _{PZH}	Output enable time	R _L = 110 Ω , (Figure 10. Drive propagation time waveform and Figure 11. Drive enable and disable times test circuit (R _L = 110 Ω))		30	50	ns
t _{PHZ}	Output disable time	R _L = 110 , (Figure 6. Drive differential output delay transition time waveform and Figure 7. Drive enable and disable times test circuit)		19	35	ns
t _{PLZ}	Output disable time	R _L = 110 Ω (Figure 10. Drive propagation time waveform and Figure 11. Drive enable and disable times test circuit (R _L = 110 Ω))		30	50	ns
t _{SKEW}	Differential output delay skew			1	3	ns
t _{ZH(SHDN)}	Driver enable from shutdown to output high			30	50	ns
t _{ZL(SHDN)}	Driver enable from shutdown to output low			19	35	ns

^{1.} Measured on $|t_{PLH}(A)-t_{PHL}(A)|$ and $|t_{PLH}(B)-t_{PHL}(B)|$

DS13697 - Rev 1 page 6/21

Table 9. Receiver switching characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay	V _{ID} = 0 V to 3 V, C _{L1} =15 pF (Figure 12. Drive enable and disable times waveforms (B) and Figure 13. Receiver propagation delay time test circuit)		30	50	ns
t _{RPDS}	tPLH - tPHL propagation delay skew	V _{ID} = 0 V to 3 V, C _{L1} =15 pF (Figure 12. Drive enable and disable times waveforms (B) and Figure 13. Receiver propagation delay time test circuit)		1	3	ns
t _{PZL}	Outputenable time C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))				20	ns
t _{PZH}	Outputenable time	C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))		10	20	ns
t _{PHZ}	Outputdisable time	C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))		10	20	ns
t _{PLZ}	t _{PLZ} Outputdisable time C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))			10	20	ns
t _{ZH(SHDN)}	Receiver enable from shutdown to output high	C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))		10	20	ns
t _{ZL(SHDN)}	Receiver enable from shutdown to output low	C _{RL} = 15 pF, (Figure 14. Receiver propagation delay time waveforms and Figure 18. Receiver enable and disable times waveform (S2 closed))		20	40	μs

DS13697 - Rev 1 page 7/21

5

Test circuits and typical characteristics

Figure 2. Driver and V_{OC} test load

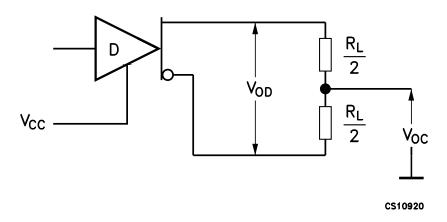


Figure 3. Driver $V_{\mbox{\scriptsize OD}}$ with varying common mode voltage test load

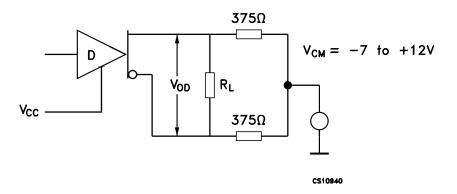
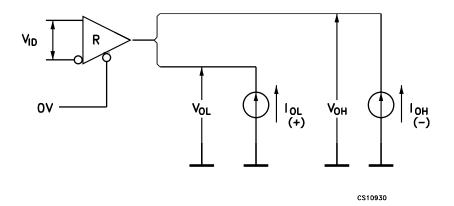



Figure 4. Receiver $V_{\mbox{\scriptsize OH}}$ and $V_{\mbox{\scriptsize OL}}$ test circuit

DS13697 - Rev 1 page 8/21

Figure 5. Drive differential output delay transition time test circuit

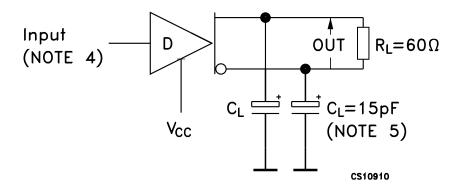


Figure 6. Drive differential output delay transition time waveform

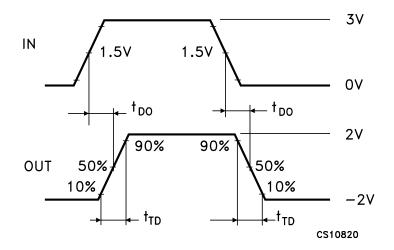
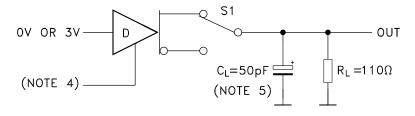



Figure 7. Drive enable and disable times test circuit

CS10960

DS13697 - Rev 1 page 9/21

Figure 8. Drive enable and disable times waveforms

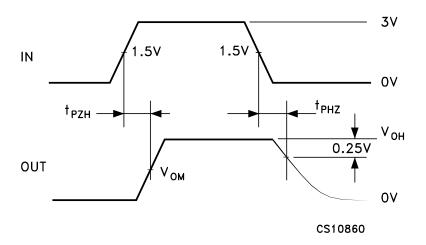


Figure 9. Drive propagation time test circuit

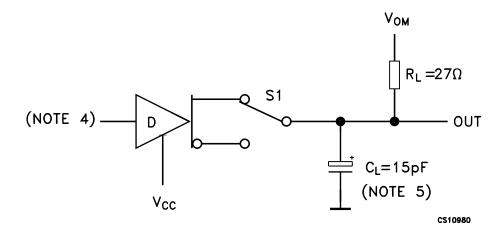
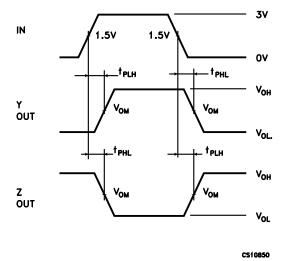



Figure 10. Drive propagation time waveform

DS13697 - Rev 1 page 10/21

Figure 11. Drive enable and disable times test circuit (R_L = 110 Ω)

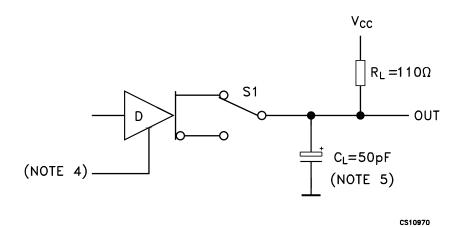


Figure 12. Drive enable and disable times waveforms (B)

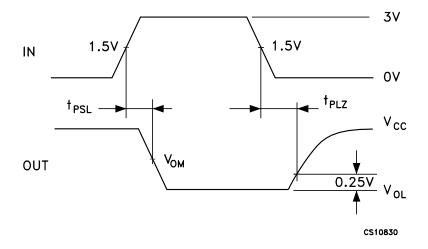
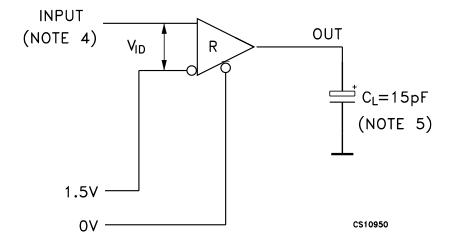



Figure 13. Receiver propagation delay time test circuit

DS13697 - Rev 1 page 11/21

Figure 14. Receiver propagation delay time waveforms

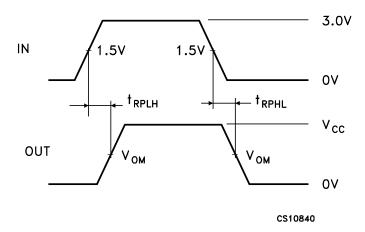


Figure 15. Receiver enable and disable times test circuit (B)

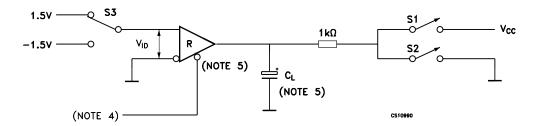
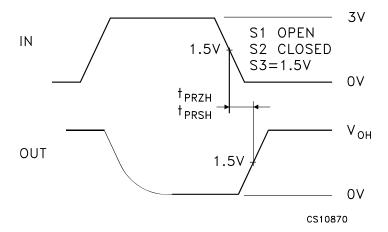



Figure 16. Receiver enable and disable times waveform (S1 open)

DS13697 - Rev 1 page 12/21

Figure 17. Receiver enable and disable times waveform (S1 closed)

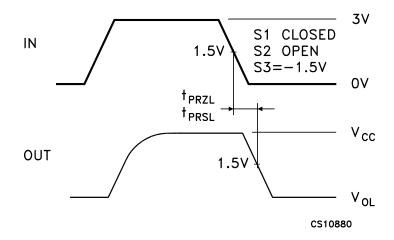


Figure 18. Receiver enable and disable times waveform (S2 closed)

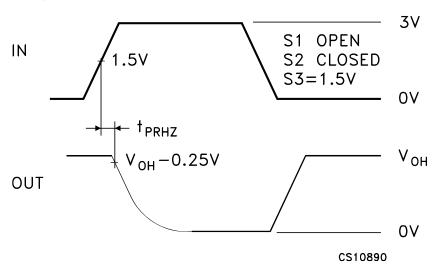
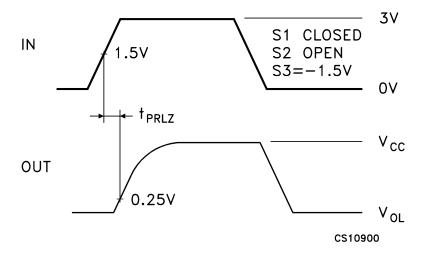



Figure 19. Receiver enable and disable times waveform (S2 open)

DS13697 - Rev 1 page 13/21

Figure 20. Receiver output current vs. output low voltage

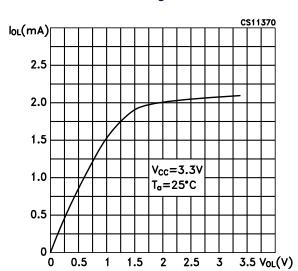


Figure 21. Receiver output current vs. output high voltage

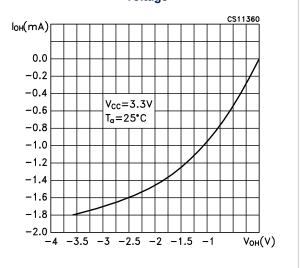


Figure 22. Low level driver output capability

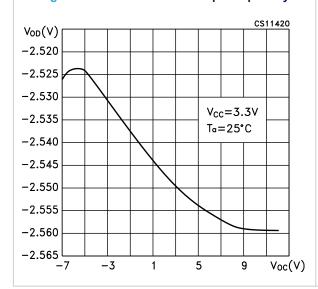



Figure 23. High level driver output capability

DS13697 - Rev 1 page 14/21

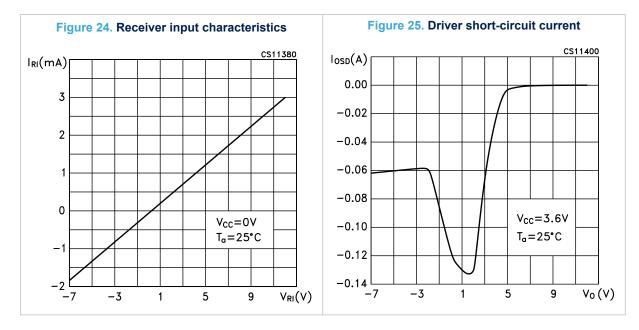
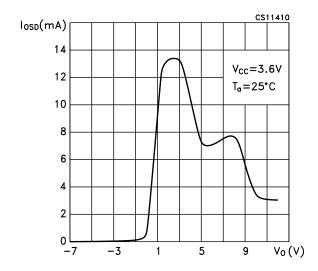



Figure 26. Driver short-circuit current

DS13697 - Rev 1 page 15/21

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 SO8 package information

Figure 27. SO8 package outline

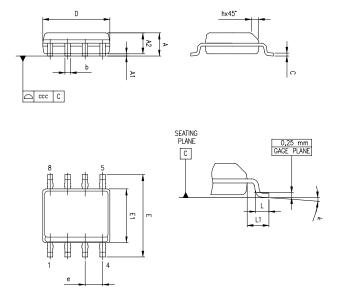


Table 10. SO-8 mechanical data

Dim.	m	m		Inches		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.1		0.25	0.004		0.01
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.01
D	4.8	4.9	5	0.189	0.193	0.197
E	5.8	6	6.2	0.228	0.236	0.244
E1	3.8	3.9	4	0.15	0.154	0.157
е		1.27			0.05	
h	0.25		0.5	0.01		0.02
L	0.4		1.27	0.016		0.05
L1		1.04			0.04	
k	0		8 °	1 °		8 °
ccc			0.1			0.004

DS13697 - Rev 1 page 16/21

7 Ordering information

Table 11. Ordering information

Order codes	Order codes Temperature range		Packing
ST1480ACDR/US	0 to 70 °C	SO-8 tape and reel	2500 parts per reel

DS13697 - Rev 1 page 17/21

Revision history

Table 12. Document revision history

Date	Version	Changes
06-Apr-2021	1	Initial release.

Contents

1	Pin configuration	2
2	Truth tables	3
3	Maximum ratings	4
4	Electrical characteristics	5
5	Test circuits and typical characteristics	8
6	Package information	16
	6.1 SO8 package information	16
7	Ordering information	17
Rev	vision history	18

List of tables

Table 1.	Pin description
	Truth table (driver)
Table 3.	Absolute maximum ratings
Table 4.	Electrical characteristics
Table 5.	Logic input electrical characteristics
Table 6.	Transmitter electrical characteristics
Table 7.	Receiver electrical characteristics
Table 8.	Driver switching characteristics
Table 9.	Receiver switching characteristics
	SO-8 mechanical data
Table 11.	Ordering information
	Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13697 - Rev 1 page 21/21