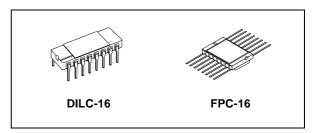


M54HC165

RAD-HARD 8 BIT PISO SHIFT REGISTER

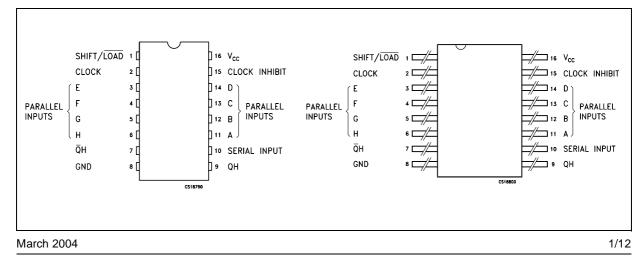

- HIGH SPEED: t (T)/D
- $t_{PD} = 15$ ns (TYP.) at $V_{CC} = 6V$
- LOW POWER DISSIPATION: I_{CC} =4µA(MAX.) at T_A=25°C
- HIGH NOISE IMMUNITY: V AND A STATE OF A S
- V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.) ■ SYMMETRICAL OUTPUT IMPEDANCE:
- |I_{OH}| = I_{OL} = 4mA (MIN) ■ BALANCED PROPAGATION DELAYS:
- t_{PLH} ≅ t_{PHL} WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 165
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9306-042

DESCRIPTION

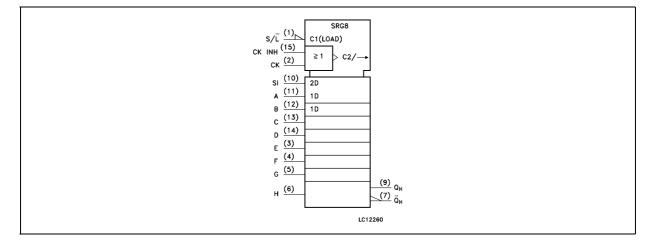
The M54HC165 is an high speed CMOS 8 BIT PISO SHIFT REGISTER fabricated with silicon gate C^2MOS technology.

This device contains eight clocked master slave RS flip-flops connected as a shift register, with auxiliary gating to provide over-riding asynchronous parallel entry. Parallel data enters

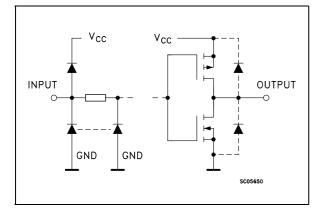
PIN CONNECTION


ORDER CODES

PACKAGE	FM	EM
DILC	M54HC165D	M54HC165D1
FPC	M54HC165K	M54HC165K1


when the shift/load input is low. The parallel data can change while shift/load is low, provided that the recommended set-up and hold times are observed. For clocked operation, shift/load must be high. The two clock input perform identically; one can be used as a clock inhibit by applying a high signal; to permit this operation clocking is accomplished through a 2 input nor gate.

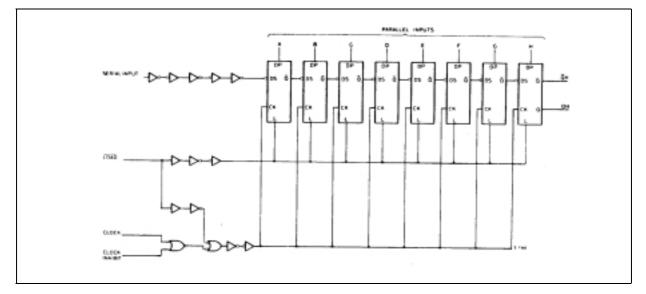
To avoid double clocking, however, the inhibit signal should only go high while the clock is high. Otherwise the rising inhibit signal will cause the same response as rising clock edge.


All inputs are equipped with protection circuits against static discharge and transient excess voltage.

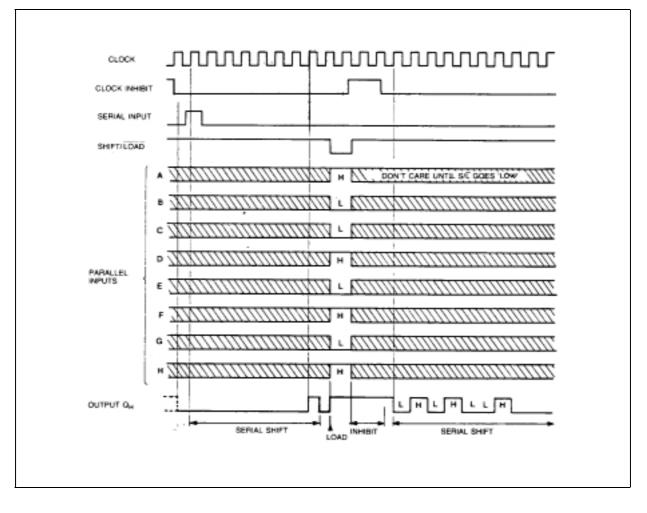
IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION


PIN N°	SYMBOL	NAME AND FUNCTION				
1	SHIFT/LOAD	Data Inputs				
2	QH	Complementary Output				
7	QH	Serial Output				
9	CLOCK	Clock Input (LOW to HIGH, Edge Triggered				
10	SI	Serial Data Inputs				
11, 12, 13, 14, 3, 4, 5, 6	A to H	Parallel Data Inputs				
15	CLOCK INH	Clock Inhibit				
8	GND	Ground (0V)				
16	V _{CC}	Positive Supply Voltage				

TRUTH TABLE


		INPUTS	INTERNAL	INTERNAL OUTPUTS			
SHIET/ LOAD	CLOCK INH	CLOCK	SI	АН	QA	QB	QH
L	Х	Х	Х	ah	а	b	h
н	L		Н	Х	Н	QAn	QGn
н	L		L	Х	L	QAn	QGn
Н		L	Н	Х	Н	QAn	QGn
Н		L	L	Х	L	QAn	QGn
Н	Х	Н	Х	Х		NO CHANGE	
Н	Н	Х	Х	Х		NO CHANGE	

a......h : The level of steady input voltage at inputs a through respectively QAn - QGn : The level of QA - QG, respectively. before the most-recent transition of the clock

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 25	mA
$\rm I_{CC}$ or $\rm I_{GND}$	DC V _{CC} or Ground Current	± 50	mA
PD	Power Dissipation	300	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	$V_{CC} = 2.0V$	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

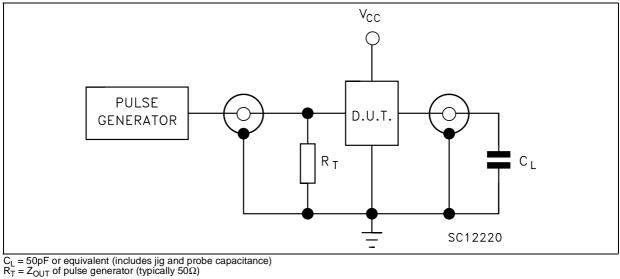
DC SPECIFICATIONS

		Г	est Condition				Value				
Symbol	Parameter	v _{cc}		T _A = 25°C -40 to				85°C -55 to 125°C			Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
VIL	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH}		2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	$V_{I} = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_{I} = V_{CC}$ or GND			4		40		80	μΑ

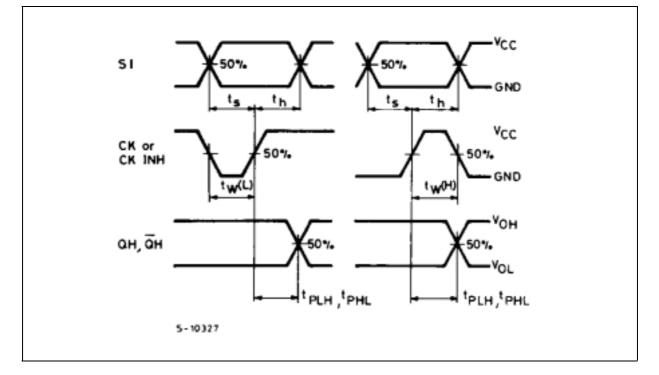
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input $t_r = t_f = 6ns$)

		Т	est Condition				Value				
Symbol Parameter	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			55	150		190		225	
	Time	4.5			18	30		38		45	ns
	(CLOCK - QH, QH)	6.0			15	26		33		38	
t _{PLH} t _{PHL}	Propagation Delay	2.0			65	165		205	250		
	Time	4.5			21	33		41		50	ns
	(SHI <u>FT/LOAD</u> - QH, QH)	6.0			18	28		35		43	
t _{PLH} t _{PHL}	Propagation Delay	2.0			52	135		170		205	
	Time	4.5	·		17	27		34		41	ns
	(H - QH, QH)	6.0	·		14	23		29		35	
f _{MAX}	Maximum Clock	2.0		7.4	15		6.0		4.8		
	Frequency	4.5		37	60		30		24		MHz
		6.0		44	71		35		28		
t _{W(H)}	Minimum Pulse	2.0			24	75		95		110	
t _{W(L)}	Width	4.5			6	15		19		22	ns
()	(CLOCK)	6.0			5	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			32	75		95		110	
(=)	Width	4.5			8	15		19		22	ns
	(SHIFT/LOAD)	6.0			7	13		16		19	
ts	Minimum Set-up	2.0			24	75		95		110	
0	Time	4.5			6	15		19		22	
	(PI-SHIFT/LOAD) (SI - CL <u>OCK)</u> (SHIFT/LOAD - CK)	6.0			5	13		16		19	ns
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	
	(PI - SHIFT/LOAD) (SI - CL <u>OCK)</u> (SHIFT/LOAD - CK)	6.0				0		0		0	ns
t _{REM}	Minimum Removal	2.0			20	75		95		110	
	Time	4.5			5	15		19		22	ns
	(CLOCK - CK INH)	6.0			4	13		16		19	

CAPACITIVE CHARACTERISTICS


			Test Condition	Value							
Symbol	Parameter		v _{cc}	T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	рF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			55						pF

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

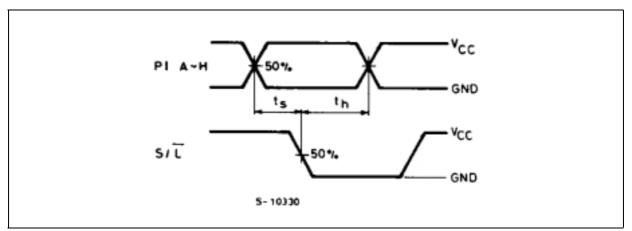

57

6/12

TEST CIRCUIT

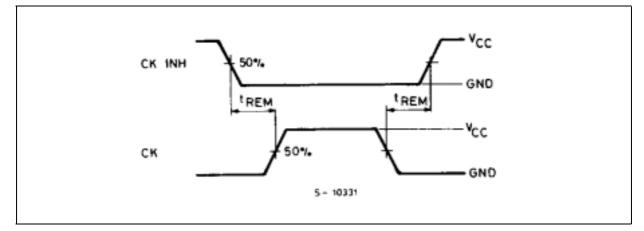
WAVEFORM 1: SERIAL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)



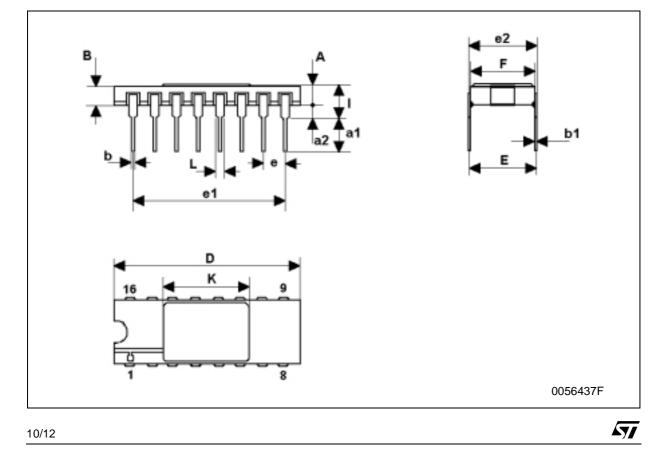


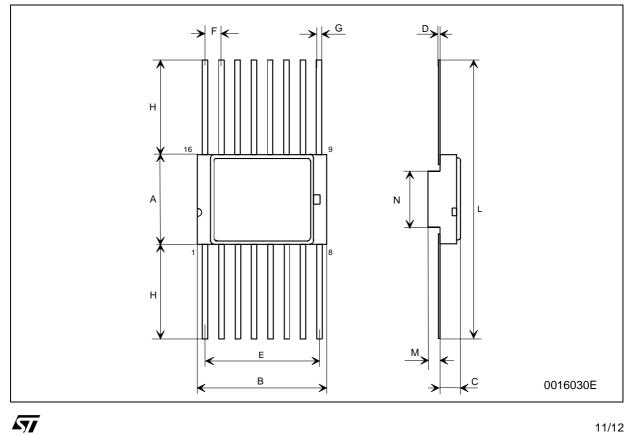
WAVEFORM 2: PARALLEL MODE PROPAGATION DELAY (f=1MHz; 50% duty cycle)

WAVEFORM 3: MINIMUM PULSE WIDTH (S/L), PROPAGATION DELAY TIMES


(f=1MHz; 50% duty cycle)

WAVEFORM 4: SETUP AND HOLD TIME (PI TO S/L) (f=1MHz; 50% duty cycle)


WAVEFORM 5: MINIMUM REMOVAL TIME (CK INH TO CK) (f=1MHz; 50% duty cycle)


DIM.		mm.		inch					
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А	2.1		2.71	0.083		0.107			
a1	3.00		3.70	0.118		0.146			
a2	0.63	0.88	1.14	0.025	0.035	0.045			
В	1.82		2.39	0.072		0.094			
b	0.40	0.45	0.50	0.016	0.018	0.020			
b1	0.20	0.254	0.30	0.008	0.010	0.012			
D	20.06	20.32	20.58	0.790	0.800	0.810			
е	7.36	7.62	7.87	0.290	0.300	0.310			
e1		2.54			0.100				
e2	17.65	17.78	17.90	0.695	0.700	0.705			
e3	7.62	7.87	8.12	0.300	0.310	0.320			
F	7.29	7.49	7.70	0.287	0.295	0.303			
I			3.83			0.151			
К	10.90		12.1	0.429		0.476			
L	1.14		1.5	0.045		0.059			

DIM.		mm.		inch					
Dini.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А	6.75	6.91	7.06	0.266	0.272	0.278			
В	9.76	9.94	10.14	0.384	0.392	0.399			
С	1.49		1.95	0.059		0.077			
D	0.102	0.127	0.152	0.004	0.005	0.006			
Е	8.76	8.89	9.01	0.345	0.350	0.355			
F		1.27			0.050				
G	0.38	0.43	0.48	0.015	0.017	0.019			
Н	6.0			0.237					
L	18.75		22.0	0.738		0.867			
М	0.33	0.38	0.43	0.013	0.015	0.017			
N		4.31			0.170	T			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Switzerland - United Kingdom - United States.

http://www.st.com

57

12/12