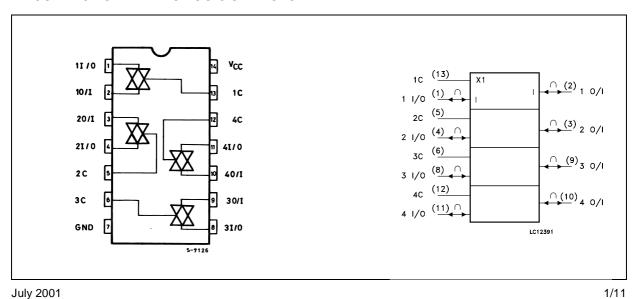


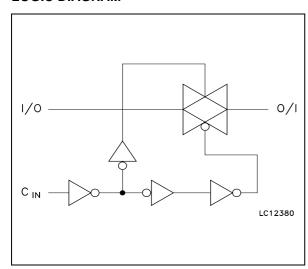
QUAD BILATERAL SWITCH

- HIGH SPEED:
 - $t_{PD} = 7 \text{ns} \text{ (TYP.)} \text{ at } V_{CC} = 6 \text{V}$
- LOW POWER DISSIPATION: $I_{CC} = 1\mu A(MAX.)$ at $T_A=25^{\circ}C$
- LOW "ON" RESISTANCE:
 - $R_{ON} = 50\Omega$ TYP. AT $V_{CC} = 9V$, $I_{I/O} = 100 \mu A$
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2V TO 12V
- SINE WAVE DISTORTION: 0.042% at V_{CC} = 4V f = 1KHz
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4066

The M74HC4066 is an high speed CMOS QUAD BILATERAL SWITCH fabricated with silicon gate C^2 MOS technology.



ORDER CODES


PACKAGE	TUBE	T & R
DIP	M74HC4066B1R	
SOP	M74HC4066M1R	M74HC4066RM13TR
TSSOP		M74HC4066TTR

The C input is provided to control the switch; the switch is on when the C input is held high and off when C is held low.

PIN CONNECTION AND IEC LOGIC SYMBOLS

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 4, 8, 11	1 to 4 I/O	Independent Inputs/Outputs
2, 3, 9, 10	1 to 4 O/I	Independent Outputs/ Inputs
13, 5, 6, 12	1C to 4C	Enable Inputs (Active High)
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

TRUTH TABLE

CONTROL	SWITCH FUNCTION
Н	ON
L	OFF

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +13	V
V _{IN}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _{I/O}	DC Input/Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{OK}	Control Input DC Diode Current	± 20	mA
I _{IOK}	I/O DC Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied (*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 12	V
V _{IN}	Input Voltage (Control)		0 to V _{CC}	V
V _{I/O}	I/O Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	
+ +.		$V_{CC} = 4.5V$	0 to 500	200
t _r , t _f		V _{CC} = 6.0V	0 to 400	ns
		V _{CC} = 10.0V	0 to 250	

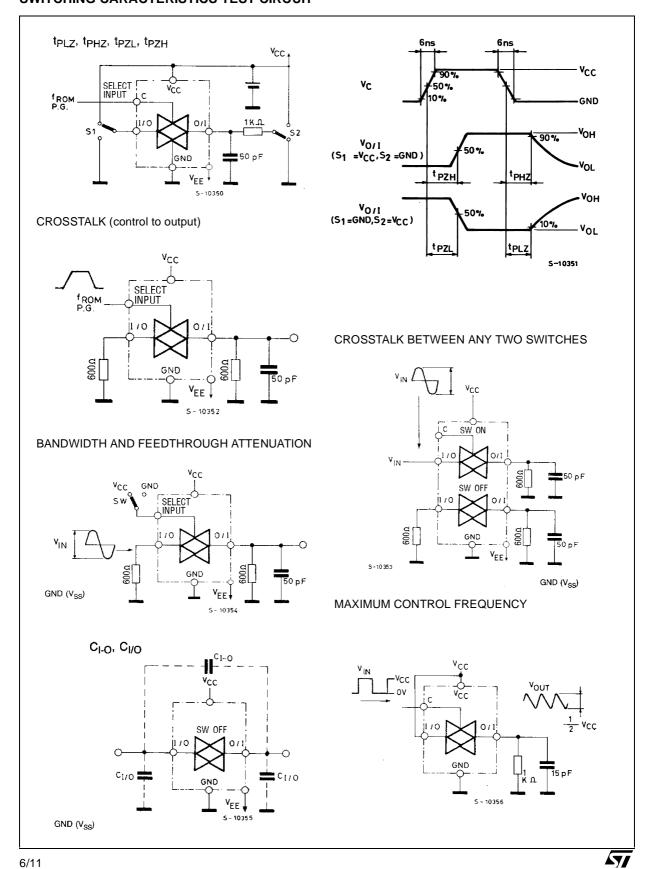
DC SPECIFICATIONS

		-	Test Condition	Value							
Symbol	Parameter	v _{cc}		T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IHC}	High Level Control	2.0		1.5			1.5		1.5		
	Input Voltage	4.5		3.15			3.15		3.15		V
		9.0		6.3			6.3		6.3		V
		12.0		8.4			8.4		8.4		
V_{ILC}	Low Level Control	2.0				0.5		0.5		0.5	
	Input Voltage	4.5				1.35		1.35		1.35	V
		9.0				2.7		2.7		2.7	V
		12.0				3.6		3.6		3.6	
R_{ON}	ON Resistance	4.5	$V_I = V_{IHC}$		96	170		200		250	
	9.0	$V_{I/O} = V_{CC}$ to GND		55	85		100		150		
	12.0	I _{I/O} ≤ 1mA		45	80		90		120	Ω	
		4.5	$V_I = V_{IHC}$		70	100		130		160	22
		9.0	$V_{I/O} = V_{CC}$ or GND		50	75		95		115	
		12.0	I _{I/O} ≤ 1mA		45	70		90		110	
ΔR_{ON}	Difference of ON	4.5	$V_I = V_{IHC}$		10						
	Resistance between switches	9.0	$V_{I/O} = V_{CC}$ or GND		5						Ω
		12.0	I _{I/O} ≤ 1mA		5						
l _{OFF}	Input/Output Leakage Current (SWITCH OFF)	12.0	$V_{OS} = V_{CC}$ or GND $V_{IS} = V_{CC}$ or GND $V_{IN} = V_{ILC}$			± 0.1		± 1		± 2	μА
I _{IZ}	Switch Input Leakage Current (SWITCH ON, OUTPUT OPEN)	12.0	$V_{OS} = V_{CC}$ or GND $V_{IN} = V_{IHC}$			± 0.1		± 1		± 2	μΑ
I _{IN}	Control Input Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
Icc	Quiescent Supply	6.0				1		10		20	
	Current	9.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ
		12.0			_	8	_	80		160	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

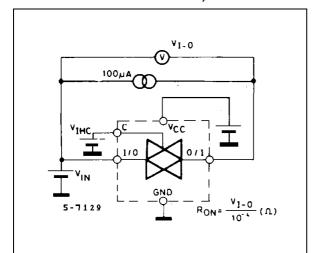
		7	est Condition	Value							
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
$\Phi_{I/O}$	Phase Difference	2.0			10	50		65		75	
	Between Input and	4.5	•		4	10		13		15	
	Output	9.0			3	8		10		13	ns
		12.0	•		3	7		9		10	
t _{PZL}	Output Enable Time	2.0			18	100		125		150	
t _{PZH}		4.5	$R_L = 1K\Omega$		8	20		25		30	ns
		9.0			6	12		22		27	
		12.0	•		6	12		18		25	
t _{PLZ}	Output Disable	2.0			20	115		145		175	
t_{PHZ}	Time	4.5	$R_L = 1K\Omega$		10	23		29		35	
		9.0	17 - 11/22		8	20		25		30	ns
		12.0	•		8	18		22		27	
	Maximum Control	2.0	D 41/O		30						
		4.5	$K_L = 1K22$		30						MHz
		9.0	$R_{L} = 1K\Omega$ $C_{L} = 15 \text{ pF}$ $V_{OUT} = 1/2 V_{CC}$		30						IVIITZ
		12.0	1001 - 1/2 VCC		30						

CAPACITIVE CHARACTERISTICS

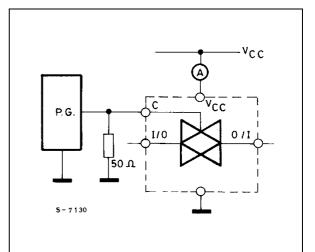

			Test Condition		Value						
Symbol	Parameter	v _{cc}		T _A = 25°C			-40 to	-40 to 85°C		-55 to 125°C	
	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{I/O}	Switch Terminal Capacitance				6						pF
C _{IOS}	Feed Through Capacitance				0.5						pF
C _{PD}	Power Dissipation Capacitance (note 1)				15						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}

ANALOG SWITCH CHARACTERISTICS (GND = $0V;T_A = 25$ °C)

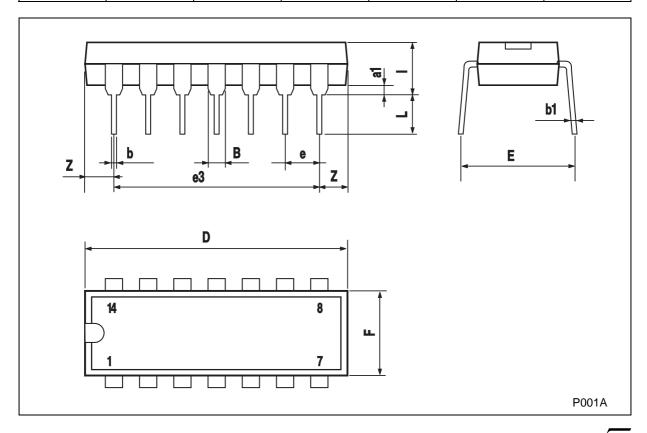

Symbol	Parameter			Test Condition	Value	Unit
		V _{CC} (V)	V _{IN} (V _{p-p})			
	Sine Wave	4.5	4	f 1 KH-2 D 10 KO C 50 5E	0.05	%
	Distortion (THD)	9.0	8	$f_{IN} = 1 \text{ KHz } R_L = 10 \text{ K}\Omega, C_L = 50 \text{ pF}$	0.04	70
f _{MAX}	Frequency	4.5		Adjust f _{IN} voltage to obtain 0 dBm at V _{OS} .	200	
	Response (Switch ON)	9.0	I	Increase f_{IN} Frequency until dB meter reads -3dB $R_L = 50\Omega, C_L = 10 \text{ pF}$		MHz
	Feed through	4.5		V _{IN} is centered at V _{CC} /2. Adjust input for 0 dBm	-60	
	Attenuation (Switch OFF)	9.0		$\rm R_L = 600\Omega~C_L = 50~pF, f_{IN} = 1MHz$ sine wave	-60	dB
	Crosstalk (Control	4.5			60	
	Input to Signal Output)	9.0	$R_L = 6$	00Ω , C _L = 50 pF, f _{IN} = 1MHz square wave (t _r = t _f =6ns)		mV
	Crosstalk (Between	4.5		Adjust V _{IN} to Obtain 0 dBmat input	-60	5
	Any Switches)	9.0		R_L = 600 $\!\Omega_{\!_{}}$, C_L = 50 pF, f_{IN} = 1MHz sine wave	-60	dB

SWITCHING CARACTERISTICS TEST CIRCUIT

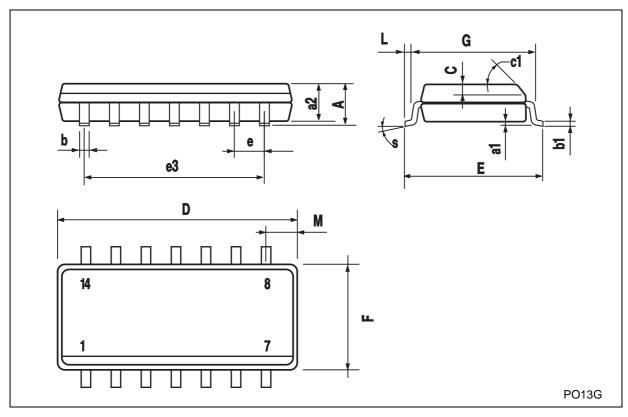


Downloaded from **Arrow.com**.

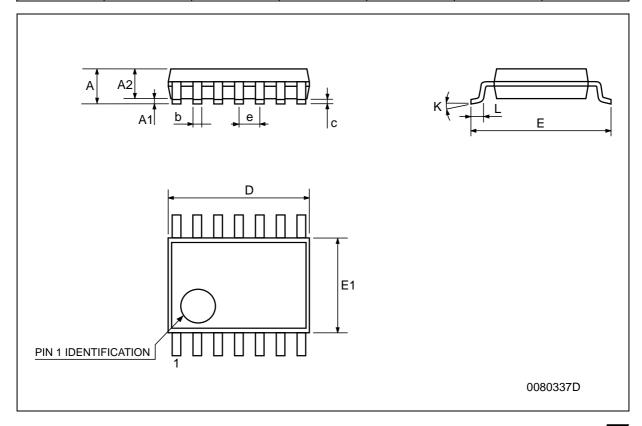
CHANNEL RESISTANCE (R_{ON)}



 I_{CC} (Opr.)


Plastic DIP-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
1			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		


SO-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)		•		

TSSOP14 MECHANICAL DATA

DIM.		mm.		inch			
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

