

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

May 1988 Revised September 2000

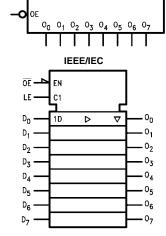
74F373

Octal Transparent Latch with 3-STATE Outputs

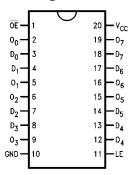
General Description

The 74F373 consists of eight latches with 3-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\text{OE}}$) is LOW. When $\overline{\text{OE}}$ is HIGH the bus output is in the high impedance state.

Features


- Eight latches in a single package
- 3-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

Ordering Code:


Order Number	Package Number	Package Description
74F373SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F373PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation

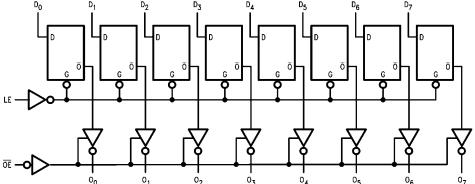
DS009523

www.fairchildsemi.com

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₇	Data Inputs	1.0/1.0	20 μA/–0.6 mA		
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 μA/-0.6 mA		
ŌĒ	Output Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
O ₀ -O ₇	3-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description


The 74F373 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

	Inputs	Output			
LE	OE D _n		O _n		
Н	L	Н	Н		
Н	L	L	L		
L	L	Χ	O _n (no change)		
Х	Н	X	Z		

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance State

Logic Diagram

 $0_0 \qquad 0_1 \qquad 0_2 \qquad 0_3 \qquad 0_4 \qquad 0_5 \qquad 0_6$ Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \end{array}$

Ambient Temperature under Bias -55° C to $+125^{\circ}$ C Junction Temperature under Bias -55° C to $+150^{\circ}$ C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \mbox{Standard Output} & -0.5 \mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5 \mbox{V to } +5.5 \mbox{V} \end{array}$

Current Applied to Output

 $\label{eq:lower_state} \begin{array}{ll} \text{in LOW State (Max)} & \text{twice the rated I}_{\text{OL}} \ (\text{mA}) \\ \text{ESD Last Passing Voltage (Min)} & 4000V \end{array}$

Recommended Operating Conditions

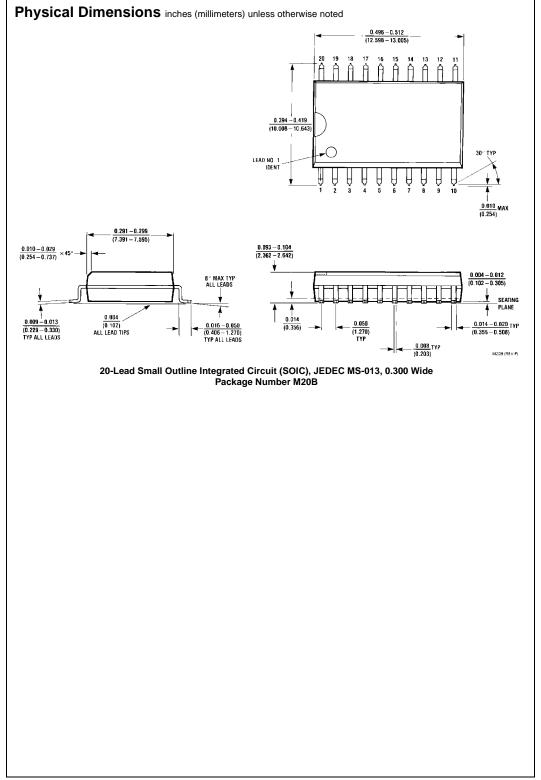
Free Air Ambient Temperature 0° C to $+70^{\circ}$ C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

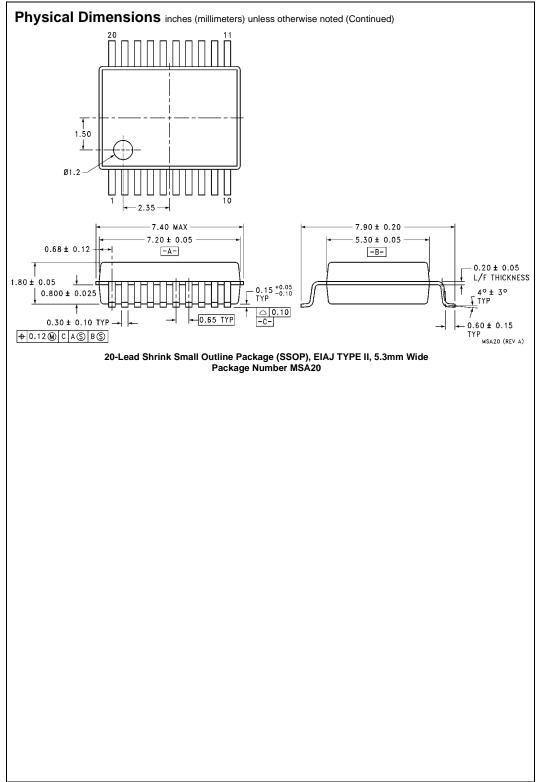
DC Electrical Characteristics

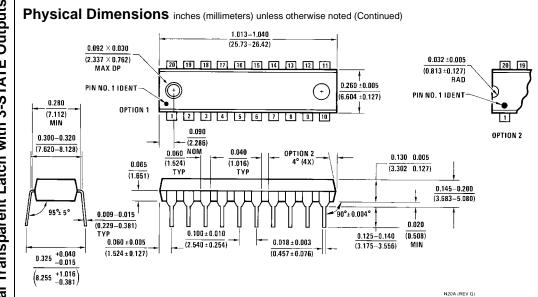
Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
		$5\% V_{CC}$	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$
		$5\% V_{CC}$	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				3.0	μΛ	IVICIA	V N - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μιτ	IVICA	VIN - 7.0 V
I _{CEX}	Output HIGH				50	μА	Max	V _{OUT} = V _{CC}
	Leakage Current				30	μΛ	IVICIA	4001 - 4CC
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.70			٧	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				0.70	μιτ	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCZ}	Power Supply Current			38	55	mA	Max	$V_O = HIGH Z$


www.fairchildsemi.com

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_1 = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_1 = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.0	5.3	7.0	3.0	8.5	3.0	8.0	ns
t _{PHL}	D _n to O _n	2.0	3.7	5.0	2.0	7.0	2.0	6.0	
t _{PLH}	Propagation Delay	5.0	9.0	11.5	5.0	15.0	5.0	13.0	ns
t _{PHL}	LE to On	3.0	5.2	7.0	3.0	8.5	3.0	8.0	
t _{PZH}	Output Enable Time	2.0	5.0	11.0	2.0	13.5	2.0	12.0	
t_{PZL}		2.0	5.6	7.5	2.0	10.0	2.0	8.5	ns
t _{PHZ}	Output Disable Time	1.5	4.5	6.5	1.5	10.0	1.5	7.5	no
t_{PLZ}		1.5	3.8	5.0	1.5	7.0	1.5	6.0	ns


AC Operating Requirements


		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55$ °C to +125°C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	į l
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		2.0		
t _S (L)	D _n to LE	2.0		2.0		2.0		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0		115
t _H (L)	D _n to LE	3.0		4.0		3.0		
t _W (H)	LE Pulse Width, HIGH	6.0		6.0		6.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 2.6±0.10 0.40 TYP --A-5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 ○ 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-- 0.6 TYP 1.27 TYP -LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 2.1 MAX. 1.8±0.1 0.15±0.05 0.15-0.25 -1.27 TYP 0.35-0.51 **♦** 0.12 **⋈** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE NOTES: 0.25 A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15-SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com