

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

April 2007

74ACQ574, 74ACTQ574 Quiet Series™ Octal D-Type Flip-Flop with 3-STATE Outputs

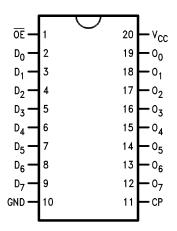
Features

- I_{CC} and I_{OZ} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Inputs and outputs on opposite sides of the package allowing easy interface with microprocessors
- Functionally identical to the ACQ/ACTQ374
- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24mA
- Faster prop delays than the standard AC/ACT574

General Description

The ACQ/ACTQ574 is a high-speed, low-power octal D-type flip-flop with a buffered Common Clock (CP) and a buffered common Output Enable (\overline{OE}) . The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH clock (CP) transition.

ACQ/ACTQ574 utilizes FACT Quiet Series™ technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

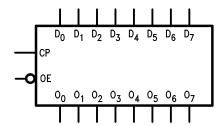

The ACQ/ACTQ574 is functionally identical to the ACTQ374 but with different pin-out.

Ordering Information

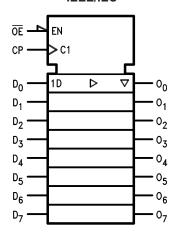
Order Number	Package Number	Package Description
74ACQ574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACQ574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACTQ574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Device also available in Tape and Reel. Specify by appending suffix "X" to the ordering number.

Connection Diagram



Pin Descriptions


Pin Names	Description
D ₀ –D ₇	Data Inputs
СР	Clock Pulse Input
ŌĒ	3-STATE Output Enable Input
O ₀ -O ₇	3-STATE Outputs

FACT™, Quiet Series™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbols

IEEE/IEC

Functional Description

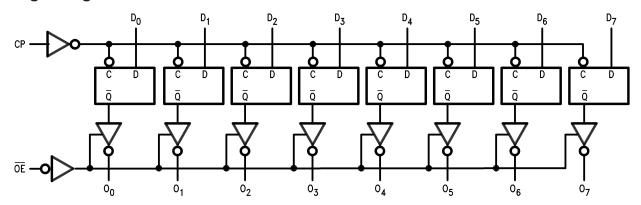
The ACQ/ACTQ574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

I	nput	S	Internal	Outputs	
ŌĒ	СР	D	Q	O _N	Function
Н	Н	L	NC	Z	Hold
Н	Н	Н	NC	Z	Hold
Н	~	L	L	Z	Load
Н	~	Н	Н	Z	Load
L	~	L	L	L	Data Available
L	~	Н	Н	Н	Data Available
L	Н	L	NC	NC	No Change in Data
L	Н	Н	NC	NC	No Change in Data

H = HIGH Voltage Level

L = LOW Voltage Level


X = Immaterial

Z = High Impedance

∠ = LOW-to-HIGH Transition

NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 1.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_I = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5V$	+20mA
V _I	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	–0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	−65°C to +150°C
	DC Latch-Up Source or Sink Current	±300mA
T _J	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	ACQ	2.0V to 6.0V
	ACTQ	4.5V to 5.5V
V _I	Input Voltage	0V to V _{CC}
V _O	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
ΔV / Δt	Minimum Input Edge Rate, ACQ Devices:	125mV/ns
	V_{IN} from 30% to 70% of V_{CC} , V_{CC} @ 3.0V, 4.5V, 5.5V	
ΔV / Δt	Minimum Input Edge Rate, ACTQ Devices:	125mV/ns
	V_{IN} from 0.8V to 2.0V, V_{CC} @ 4.5V, 5.5V	

DC Electrical Characteristics for ACQ

				T _A = -	+25°C	$T_A = -40$ °C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V$ or	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V$ or	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V _{OH}	Minimum HIGH Level	3.0	$I_{OUT} = -50\mu A$	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		3.0	$I_{OH} = -12mA$		2.56	2.46	
		4.5	I _{OH} = -24mA		3.86	3.76	
		5.5	$I_{OH} = -24 \text{mA}^{(1)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	3.0	$I_{OUT} = 50\mu A$	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
			$V_{IN} = V_{IL} \text{ or } V_{IH}$:				
		3.0	$I_{OL} = 12mA$		0.36	0.44	
		4.5	I _{OL} = 24mA		0.36	0.44	
		5.5	$I_{OL} = 24 \text{mA}^{(1)}$		0.36	0.44	
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$\begin{aligned} &V_{I}\left(OE\right)=V_{IL},V_{IH};\\ &V_{I}=V_{CC},GND;\\ &V_{O}=V_{CC},GND \end{aligned}$		±0.25	±2.5	μA
V_{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	-0.6	-1.2		V
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(5)	1.9	1.5		V

Notes:

- 1. All outputs loaded; thresholds on input associated with output under test.
- 2. Maximum test duration 2.0ms, one output loaded at a time.
- 3. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .
- 4. Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND.
- 5. Max number of data inputs (n) switching. (n–1) inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f = 1MHz.

DC Electrical Characteristics for ACTQ

				T _A = -	+25°C	$T_A = -40$ °C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW Level	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50\mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		4.5	$I_{OH} = -24mA$		3.86	3.76	V
		5.5	$I_{OH} = -24 \text{mA}^{(6)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	4.5	$I_{OUT} = 50\mu A$	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		4.5	I _{OL} = 24mA		0.36	0.44	
		5.5	$I_{OL} = 24 \text{mA}^{(6)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5	$V_I = V_{IL}, V_{IH};$ $V_O = V_{CC}, GND$		±0.25	±2.5	μA
Ісст	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽⁷⁾		V _{OHD} = 3.85V Min.			– 75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	-0.6	-1.2		V
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V

Notes:

- 6. All outputs loaded; thresholds on input associated with output under test.
- 7. Maximum test duration 2.0ms, one output loaded at a time.
- 8. Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND
- 9. Max number of data inputs (n) switching. (n–1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1MHz.

AC Electrical Characteristics for ACQ

			T _A	T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF		
Symbol	Parameter	V _{CC} (V) ⁽¹⁰⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock	3.3	75			70		MHz
	Frequency	5.0	90			85		
t _{PLH} , t _{PHL}	Propagation Delay,	3.3	3.0	9.5	13.0	3.0	13.5	ns
	$CP \text{ to } \overline{O}_n$	5.0	2.0	6.5	8.5	2.0	9.0	
t _{PZH} , t _{PZL}	Output Enable Time	3.3	3.0	9.5	13.0	3.0	13.5	ns
		5.0	2.0	6.5	8.5	2.0	9.0	
t _{PHZ} , t _{PLZ}	Output Disable Time	3.3	1.0	9.5	14.5	1.0	15.0	ns
		5.0	1.0	8.0	9.5	1.0	10.0	
toshL, toslh	Output to Output Skew,	3.3		1.0	1.5		1.5	ns
	CP to $\overline{O}_n^{(11)}$	5.0		0.5	1.0		1.0	

Notes:

- 10. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.
- 11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACQ

		$T_A = +25^{\circ}\text{C}, \qquad T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \\ C_L = 50\text{pF} \qquad C_L = 50\text{pF}$				
Symbol	Parameter	$V_{CC}(V)^{(12)}$	Тур.	Gua	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	0	3.0	3.0	ns
	D _n to CP	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW,	3.3	0	1.5	1.5	ns
	D _n to CP	5.0	2.0	1.5	1.5	
t _W	CP Pulse Width, HIGH or LOW	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

12. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V

AC Electrical Characteristics for ACTQ

			T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF			
Symbol	Parameter	V _{CC} (V) ⁽¹³⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	5.0	85			80		MHz
t _{PLH} , t _{PHL}	Propagation Delay, CP to \overline{O}_n	5.0	2.0	7.0	9.0	2.0	9.5	ns
t _{PZH} , t _{PZL}	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew, CP to $\overline{O}_n^{(14)}$	5.0		0.5	1.0		1.0	ns

Notes:

- 13. Voltage range 5.0 is 5.0V ± 0.5V.
- 14. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACTQ

			T _A = +25°C, C _L = 50pF		25°C, $T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	V _{CC} (V) ⁽¹⁵⁾	Тур. Gu		Guaranteed Minimum	
t _S	Setup Time, HIGH or LOW, D _n to CP	5.0	0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW, D _n to CP	5.0	0	1.5	1.5	ns
t _W	CP Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.0	ns

Note:

15. Voltage range 5.0 is 5.0V ± 0.5V

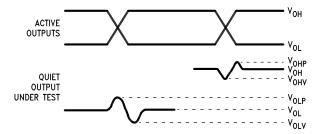
Capacitance

S	Symbol	Parameter	Conditions	Тур.	Units
	C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
	C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0V	40.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

- 16. V_{OHV} and V_{OLP} are measured with respect to ground reference.
- 17. Input pulses have the following characteristics: f = 1MHz, $t_r = 3ns$, $t_f = 3ns$, skew < 150ps.

Figure 2. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV}:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case for active and enable transition. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

VILD and VIHD:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{IL} D.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

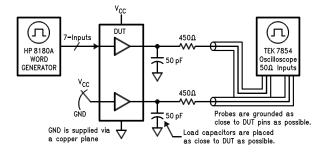
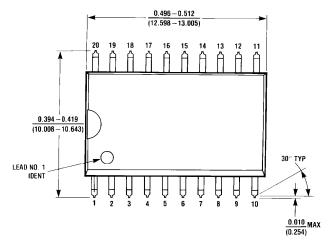
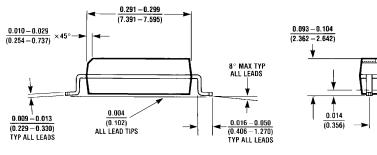




Figure 3. Simultaneous Switching Test Circuit

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

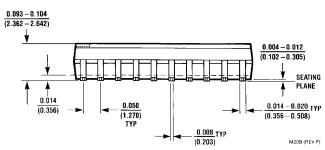
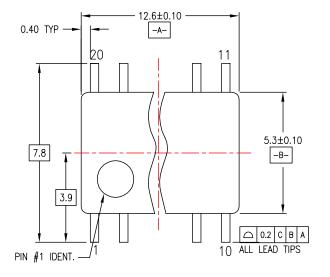
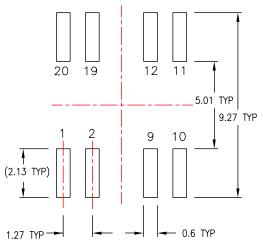
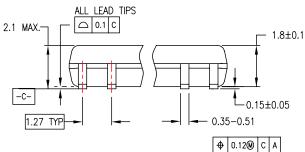
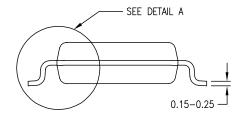
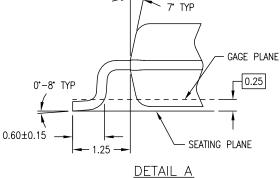




Figure 4. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B


Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M20DREVC

Figure 5. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® TinyLogic[®] HiSeC™ Programmable Active Droop™ Across the board. Around the world.™ QFĔT[®] TINYOPTO™ i-Lo™ ActiveArray™ ImpliedDisconnect™ $\mathsf{Q}\mathsf{S}^{\scriptscriptstyle\mathsf{TM}}$ TinyPower™ TinyWire™ Bottomless™ IntelliMAX™ QT Optoelectronics™ Build it Now™ Quiet Series™ TruTranslation™ ISOPLANAR™ μSerDes™ CoolFET™ MICROCOUPLER™ RapidConfigure™ CROSSVOLT™ RapidConnect™ UHC[®] MicroPak™ $\mathsf{CTL}^{\mathsf{TM}}$ UniFET™ MICROWIRE™ ScalarPump™ Current Transfer Logic™ VCX™ SMART START™ MSX^{TM} DOME™ SPM® Wire™ MSXPro™

E²CMOS™ $\mathsf{STEALTH}^{\mathsf{TM}}$ OCX^{TM} EcoSPARK® SuperFET™ OCXPro™ EnSigna™ OPTOLOGIC® SuperSOT™-3 FACT Quiet Series™ **OPTOPLANAR®** SuperSOT™-6 FACT[®] SuperSOT™-8 PACMAN™ $\mathsf{FAST}^{^{\circledR}}$ SyncFET™ РОР™ FASTr™ ТСМ™ Power220®

FPS™ Power247® The Power Franchise®

FRFET® PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I24

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com