SEMICONDUCTORIM

NC7SZ125 TinyLogic[™] UHS Buffer with 3-STATE Output

General Description

FAIRCHILD

The NC7SZ125 is a single buffer with 3-STATE output from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V range.

The inputs and output are high impedance above ground when V_{CC} is 0V. Inputs tolerate voltages up to 6V independent of V_{CC} operating voltage. The output tolerates voltages above V_{CC} when in the 3-STATE condition.

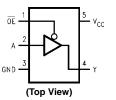
Features

- Space saving SOT23 or SC70 5-lead package
- \blacksquare Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V V_{CC}

October 1996


Revised January 2001

- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage Tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented


Ordering Code:

Product	Package	Product Code	Package Description	Supplied As
Number	Drawing	Top Mark	Fackage Description	Supplied AS
NC7SZ125M5	MA05B	7Z25	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7SZ125M5X	MA05B	7Z25	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZ125P5	MAA05A	Z25	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7SZ125P5X	MAA05A	Z25	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
A, OE	Inputs
Y	Output

Function Table

Ir	Inputs					
OE	In A	Out Y				
L	L	L				
L	н	н				

Х

H = HIGH Logic Level

L = LOW Logic Level X = HIGH or LOW Logic Level

Z = HIGH Impedance State

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2001 Fairchild Semiconductor Corporation DS012161

www.fairchildsemi.com

Ζ

Absolute Maximum Ratings(Note 1)

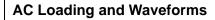
	-
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (I _{IK})	
$@V_{IN} < -0.5V$	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	± 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

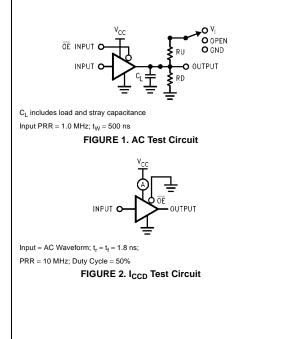
Recommended Operating Conditions (Note 2)								
Supply Voltage Operating (V_{CC})	1.65V to 5.5V							
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V							
Input Voltage (V _{IN})	0V to 5.5V							
Output Voltage (V _{OUT})								
Active State	0V to V _{CC}							
3-STATE	0V to 5.5V							
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$							
Input Rise and Fall Time (t _r , t _f)								
$V_{CC} = 1.8V$, 2.5V $\pm 0.2V$	0 ns/V to 20 ns/V							
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V							
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V							
Thermal Resistance (θ_{JA})								
SOT23-5	300°C/W							
SC70-5	425°C/W							
Note 1: Absolute maximum ratings are DC values	peyond which the device							

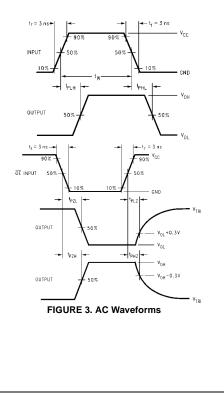
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

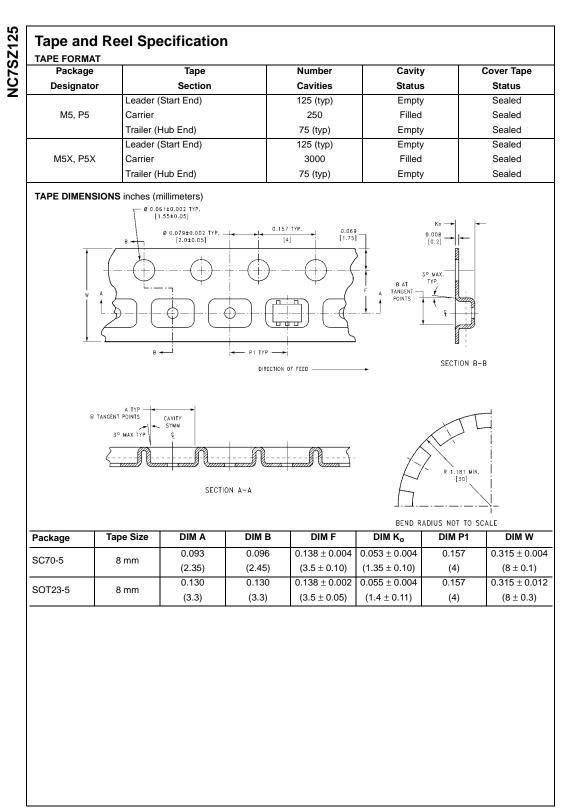
DC Electrical Characteristics

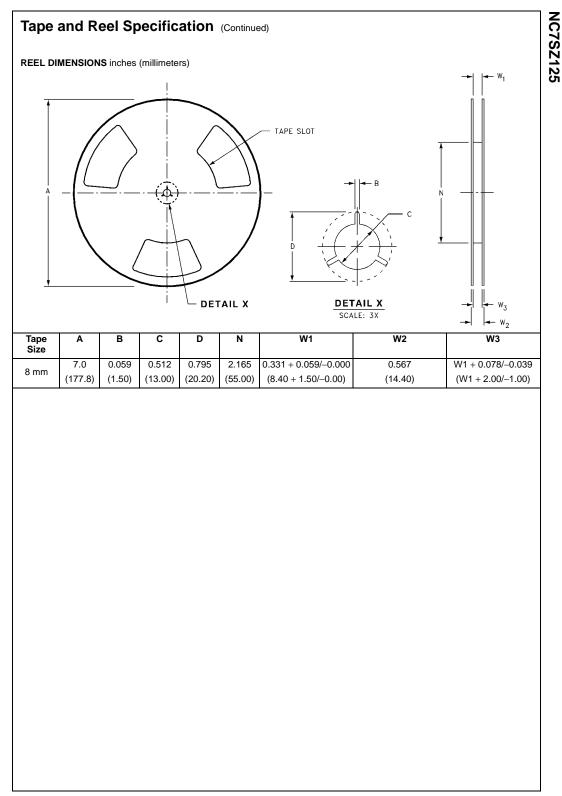

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
	Faianetei	(V)	Min	Тур	Max	Min	Max	Units		namons
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.65 to 1.95			$0.25 V_{CC}$		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IH}$	$I_{OH}=-100~\mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.0			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN}=V_{IL}$	$I_{OL}=100\;\mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μA	$0 \le V_{IN} \le 1$	
I _{OZ}	3-STATE Output Leakage	1.65 to 5.5			±1		±10	μΑ	$V_{IN} = V_{IH}$ $0 \le V_O \le 5$	
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V _{IN} or V _{OI}	
Icc	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	V _{IN} = 5.5V, GND	

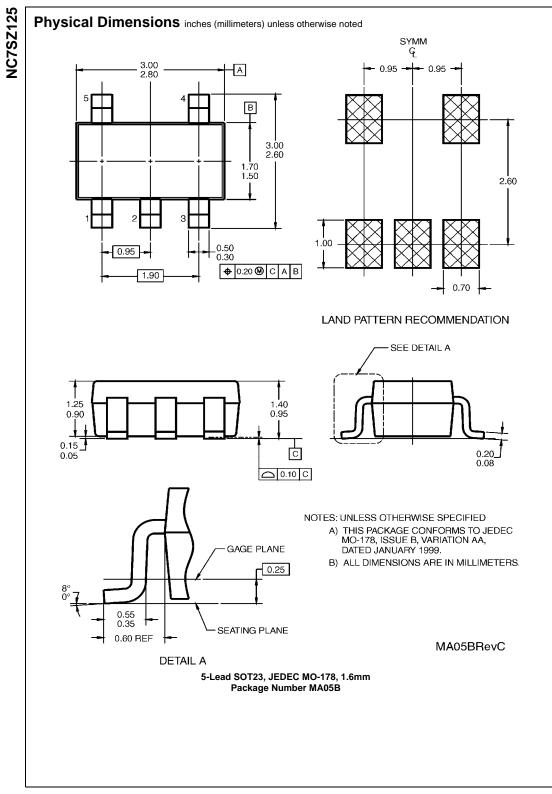

www.fairchildsemi.com

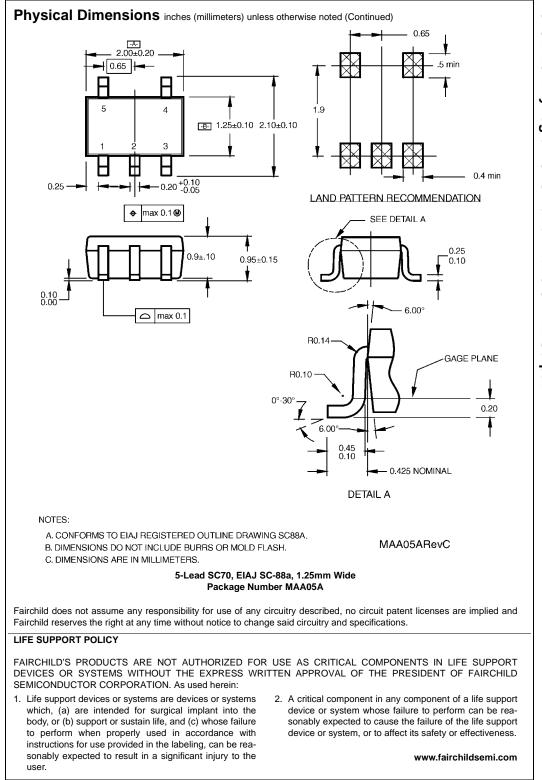

2

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PLH}	Propagation Delay	1.65	2.0	6.4	13.2	2.0	13.8			
t _{PHL}		1.8	2.0	5.3	11.0	2.0	11.5		C _L = 15 pF,	-
		2.5 ± 0.2	0.8	3.4	7.5	0.8	8.0	ns	$R_D = 1 M\Omega$,	Figures 1, 3
		3.3 ± 0.3	0.5	2.5	5.2	0.5	5.5		$S_1 = OPEN$., -
		5.0 ± 0.5	0.5	2.1	4.5	0.5	4.8			
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.5	3.2	5.7	1.5	6.0	ns	$C_L=50~\text{pF},~\text{R}_D=500\Omega,$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.6	5.0	0.8	5.3	115	$S_1 = OPEN$	
t _{PZL}	Output Enable Time	1.65	2.0	8.4	15.0	2.0	15.6		$C_L=50 \text{ pF, RD}=500\Omega$	Figures
t _{PZH}		1.8	2.0	7.0	12.5	2.0	13		$RU = 500\Omega$	
		2.5 ± 0.2	1.5	4.6	8.5	1.5	9	ns	$S_1 = GND$ for t_{PZH}	
		3.3 ± 0.3	1.5	3.5	6.2	1.5	6.5		$S_1 = V_{IN}$ for t_{PZL}	., -
		5.0 ± 0.5	0.8	2.8	5.5	0.8	5.8		$V_{IN} = 2 \times V_{CC}$	
t _{PLZ}	Output Disable Time	1.65	2.0	6.5	13.2	2.0	14.5		$C_L = 50 \text{ pF}, \text{ RD} = 500 \Omega$	
t _{PHZ}		1.8	2.0	5.4	11	2.0	12		$RU = 500\Omega$	-
		2.5 ± 0.2	1.5	3.5	8	1.5	8.5	ns	$S_1 = GND$ for t_{PHZ}	Figures 1.3
		3.3 ± 0.3	1.0	2.8	5.7	1.0	6		$S_1 = V_{IN}$ for t_{PLZ}	, -
		5.0 ± 0.5	0.5	2.1	4.7	0.5	5.0		$V_{IN} = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		4				pF		
C _{OUT}	Output Capacitance	0		8				Pi		
C _{PD}	Power Dissipation	3.3		17				рF	(Note 3)	Figure 2
	Capacitance	5.0		24				P	(11010-0)	i igui e z


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}\text{static}).$






www.fairchildsemi.com

www.fairchildsemi.com

NC7SZ125 TinyLogic™ UHS Buffer with 3-STATE Output

www.fairchildsemi.com