SN74LS251

8-Input Multiplexer with 3-State Outputs

The TTL/MSI SN74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Schottky Process for High Speed
- Multifunction Capability
- On-Chip Select Logic Decoding
- Inverting and Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-2.6	mA
I_{OL}	Output Current - Low			24	mA

ON Semiconductor ${ }^{\text {TM }}$
http://onsemi.com

1
SOEIAJ
M SUFFIX
CASE 966

ORDERING INFORMATION

Device	Package	Shipping
SN74LS251N	16 Pin DIP	2000 Units/Box
SN74LS251D	SOIC-16	38 Units/Rail
SN74LS251DR2	SOIC-16	2500/Tape \& Reel
SN74LS251M	SOEIAJ-16	See Note 1
SN74LS251MEL	SOEIAJ-16	See Note 1

1. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

CONNECTION DIAGRAM DIP (TOP VIEW)

		LOADING $($ Note a)	
PIN NAMES		HIGH	LOW
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs	$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
E_{0}	Output Enable (Active LOW) Inputs	$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Inputs	$0.5 \mathrm{U} . \mathrm{L}$.	$0.25 \mathrm{U} . \mathrm{L}$.
Z	Multiplexer Output	$65 \mathrm{U} . \mathrm{L}$.	$15 \mathrm{U.L}$.
Z	Complementary Multiplexer Output	$65 \mathrm{U} . \mathrm{L}$.	$15 \mathrm{U} . \mathrm{L}$.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{AHIGH} / 1.6 \mathrm{mALOW}$.

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input $\left(\overline{\mathrm{E}}_{\mathrm{O}}\right)$ is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{aligned}
& \bar{S}_{1} \cdot\left[\$_{2}+I_{6} \cdot\left[\mathbb { S } _ { 0 } \cdot \left[\$ _ { 1 } \cdot \left[\$_{2}+I_{7} \cdot\left[\$ _ { 0 } \cdot \left[\$_{1} \cdot\left[\$_{2}\right)\right.\right. \text {. }\right.\right.\right.\right.
\end{aligned}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$(Z)=$ High impedance (Off)

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Min	$\begin{array}{\|c\|} \hline \text { Limits } \\ \hline \text { Typ } \\ \hline \end{array}$	Max	Unit	Te	itions
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to Z Output		20 21	33 33	ns	Figure 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Select to Z Output	\checkmark	$\begin{array}{\|l\|} \hline 29 \\ 28 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 \\ 45 \\ \hline \end{array}$	ns	Figure 2	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Z Output	\bigcirc	10 9.0	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	ns	Figure 1	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Z Output		$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns	Figures 2	
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time to Z Output		$\begin{aligned} & 17 \\ & 24 \end{aligned}$	$\begin{aligned} & 27 \\ & 40 \end{aligned}$	ns	Figures 4, 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time to Z Output		$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	ns	Figures 3, 5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 37 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \\ & \hline \end{aligned}$	ns	Figures 3, 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	ns	Figures 4, 5	

3-STATE AC WAVEFORMS

Figure 1.

Figure 2.

Figure 3.
0.5 V

* Includes Jig and Probe Capacitance.

SWITCH POSITIONS

SYMBOL	SW1	SW2
$\mathrm{t}_{\text {PZH }}$	Open	Closed
$\mathrm{t}_{\text {PZL }}$	Closed	Open
$\mathrm{t}_{\text {PLZ }}$	Closed	Closed
$\mathrm{t}_{\text {PHZ }}$	Closed	Closed

Figure 5.

PACKAGE DIMENSIONS

N SUFFIX
PLASTIC PACKAGE
CASE 648-08
ISSUE R

PACKAGE DIMENSIONS

D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J

PACKAGE DIMENSIONS

M SUFFIX
SOEIAJ PACKAGE
CASE 966-01
ISSUE O

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLING DIMENSION: MILLMETER
2. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
4. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) OTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	-7-	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

ON Semiconductor and (ili are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

