

RHFOSC04

Datasheet

Rad-hard, crystal oscillator driver and divider

Features

- 2.3 V to 3.6 V supply (4.8 V AMR)
- High speed:
 - Characterized from 16 MHz to 120 MHz
- CMOS output, meets JEDEC
- Divided-frequency single output
- Low power
- TTL compatible
- Enable/disable function
 - Immunity to radiations:
 - 300 krad(Si) TID
 - SEL free up to 125 MeV.cm²/mg
 - SET free up to 125 MeV.cm²/mg
- SMD 5962F20207
- Mass: 0.42 g

Applications

Oscillators for space systems

Description

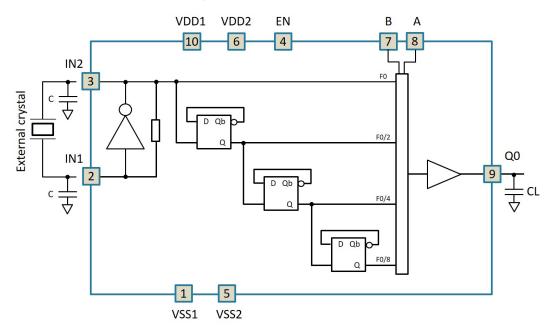
lectronics sales office

The RHFOSC04 is a crystal oscillator driver and divider. It consists of an oscillator section and 4-stage ripple-carry binary counter. The oscillator section allows the implementation of crystal oscillator circuits. The output is buffered and it is controlled by a 2-bit digital cell to deliver one among four divided frequency, from F to F/2, F/4 and F/8 frequencies. A disable function is available to set the circuit in power-down mode while keeping a high impedance output.

Designed in rad-hard rules on robust CMOS technology already proven in space, the RHFOSC04 shows an excellent stability in total-ionizing-dose (TID) up to 300 krad(Si) and it is SEL-free and SET-free up to 125 MeV.cm²/mg.

It comes in hermetic ceramic Flat-10 lead, and can operate from -55 $^\circ C$ to +125 $^\circ C$ ambient temperature.

Product status link


RHFOSC04

1 General overview

57

VDD1 and VDD2 are internally connected to the die and must be externally connected to the same voltage. VSS1 and VSS2 are internally connected to the die and must be externally connected to the same voltage. The upper metallic lid is electrically connected to pin1 (VSS).

Figure 2. Equivalent schematic

Table 1. Truth table

В	А	EN	Q0
0	0	1	F0
0	1	1	F0/2
1	0	1	F0/4
1	1	1	F0/8
Х	Х	0	High impedance

2 Maximum ratings and operating conditions

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Symbol	Parameters	Value	Units
VDD ⁽¹⁾	Maximum power supply between VDD and VSS	4.8	V
T _{stg}	Maximum temperature storage	-65 to +150	°C
Тј	Maximum junction temperature	+150	°C
R _{thjc}	Junction-to-case thermal resistance (Flat-10 package) ⁽²⁾	22	°C/W
R _{thja}	Junction-to-ambient thermal resistance (Flat-10 package) (2)	125	°C/W
Vi	Max. voltage on any pin	-0.3 V to VDD+0.3 V	V
li	Max. input current at any pin	±10	mA
ESD	HBM on all pins (human body model)	2 k	V
230	CDM on all pins (charged device model)	1 k	V

Table 2. Absolute maximum ratings

1. All voltages are with respect to the network ground terminal .

2. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on outputs.

Table 3. Operating conditions

Symbol	Parameters	Min.	Max.	Units
VDD	Supply voltage (VDD1 and VDD2 must be connected to the same voltage)	2.3	3.6	V
VIN	Input voltage IN1 and IN2	0	VDD	V
VIIN	A, B and EN inputs	0	VDD	v
T _A	Ambient temperature range	-55	+125	°C

3 Radiations

57/

Total dose (MIL-STD-883 TM 1019):

The products guaranteed in radiation within the RHA QML-V system fully comply with the MIL-STD-883 TM 1019 specification.

The RHFOSC04 is RHA QML-V, tested and characterized in full compliance with the MIL-STD-883 specification, between 50 and 300 rad/s only (full CMOS technology).

All parameters provided in Table 5. DC electrical characteristics and Table 6. AC electrical characteristics apply to both pre- and post-irradiation, as follows:

- All tests are performed in accordance with MIL-PRF-38535 and test method 1019 of MIL-STD-883 for total ionizing dose (TID)
- The initial characterization is performed in qualification only on both biased and unbiased parts
- Each wafer lot is tested at high dose rate only, in the worst bias case condition, based on the results obtained during the initial qualification

Heavy ions:

The behavior of the product, when submitted to heavy ions, is not tested in production. Heavy-ion trials are performed on qualification lots only.

Table 4. Radiations

Symbol	Characteristics	Value	Unit
TID ⁽¹⁾	High-dose rate (50 to 300 rad (Si) per second)	300	krad
SEL ⁽²⁾	Performed at 125°C with a particle angle of 60° and a fluence of 1 x 10^{7} n/cm ² (10 millions of particles per cm ²)	125	
SEL (-)	Performed at 125°C with a particle angle of 0° and a fluence of 1 x 10^7 n/cm ² (10 millions of particles per cm ²)	62 MeV.cm²/r	
SET ⁽³⁾	Performed at 25°C	125	

1. A total ionizing dose (TID) of 300 krad(Si) is equivalent to 3000 Gy(Si), (1 gray = 100 rad).

2. SEL: single event latch-up.

3. SET: single event transient.

4 Electrical characteristics

57

VDD = +2.3 V to 3.6 V, VSS = GND, enabled (EN=VDD), T_{amb} = -55°C to +125°C, unless otherwise specified.

Symbol	Parameters	Test conditions	Min.	Тур.	Max.	Unit
		IN1 and IN2 floating		0.4	0.0	
I _{DD}	Quiescent current	I _{out} = 0 (no load)		3.4	3.8	mA
Ι _Ζ	Quiescent current in disable	EN = 0 V			50	μA
I _{outZ}	Output current in disable on Q0	EN = 0 V		7	30	nA
		IOL = +100 μA,			200	
V _{OL}		VDD = 2.3 V			200	mV
VOL	Low level output voltage on Q0	IOL = +100 μA,			200	mV
		VDD = 3.6 V			200	IIIV
		IO L= +100 μA,	2.1			v
V _{OH}	High level output voltage on Q0	VDD = 2.3 V	2.1			v
VOH		IOL = +100 μA,	2.8			v
		VDD = 3.6 V	2.0			V
VIL	Low level input voltage on A, B, EN inputs	VDD = 2.3 V			0.8	V
۷IL	Low rever input voltage on A, B, EN inputs	VDD = 3.6 V			0.8	V
VIH	High level input voltage on A, B, EN inputs	VDD = 2.3 V	2			V
VIН	High level linput voltage on A, B, EN linputs	VDD = 3.6 V	2			V
		V _{in} = 0 V				
Ι _{ΙL}	Input leakage current low on A, B, EN inputs VD	VDD= 2.3 V to 3.6 V			-0.1	μA
		V _{in} = VDD			0.4	
Ι _{ΙΗ}	Input leakage current high on A, B, EN inputs	VDD = 2.3 V to 3.6 V			0.1	μA
	Object sizes it as to strength	V _{out} = VDD		50	00	
I _{sink}	Short-circuit output current	VDD = 2.3 V to 3.6 V		50	80	mA
		V _{out} = 0 V		50		
Isource	Short-circuit output current	VDD = 2.3 V to 3.6 V	-80	-50		mA

Table 5. DC electrical characteristics

VDD = +3.3 V, VSS = GND, C-load = 18 pF (see Figure 5. Phase noise, F_{clk} = 120 MHz, V_{cc} = 3.3 V), enabled (EN = VDD), Tamb = -55 °C to +125 °C, unless otherwise specified.

Symbol	Parameters	Test conditions	Min.	Тур.	Max.	Unit
	Output rise time	90%/10%, CL = 18 pF		2.2		
Tr		90%/10%, CL = 2 pF 0.		0.4		
		90%/10%, CL = 10 pF ⁽¹⁾	1	1.3	1.6	
		90%/10%, CL = 18 pF		2.2		ns
Τ _f	Output fall time	90%/10%, CL = 2 pF		0.4		
		90%/10%, CL = 10 pF ⁽¹⁾	1	1.3	1.6	
		at 250 Hz		-110		
PhN	Phase noise on Q0	Fclk = 16 MHz		-100		dBc
		at 170 Hz				
		F _{clk} = 120 MHz				
J _t	RMS Jitter	At 1 MHz		4		
Jt	RIVIS JILLEI	F _{clk} = 16 MHz		4		ps
DL1		Crystal using H1 (first harmonic),			100	
DLT	Drive level	F _{clk} = 16 MHz to 25 MHz			100	
DL3	Drive level	Drive level Crystal using H3 (third harmonic),			000	μW
		F _{clk} = 25 MHz to 120 MHz			200	
D _{tc} ⁽¹⁾	Duty-cycle on Q0	F _{clk} = 16 MHz	45	50	55	%

Table 6. AC electrical characteristics

1. Guaranteed by design and characterization

Output divided frequencies

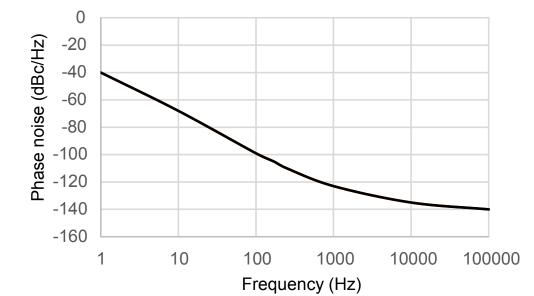
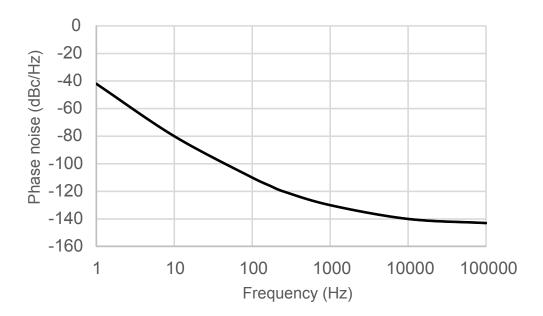



Figure 5. Phase noise, F_{clk} = 120 MHz, V_{cc} = 3.3 V

Figure 6. Phase noise, F_{clk} = 60 MHz, V_{cc} = 3.3 V

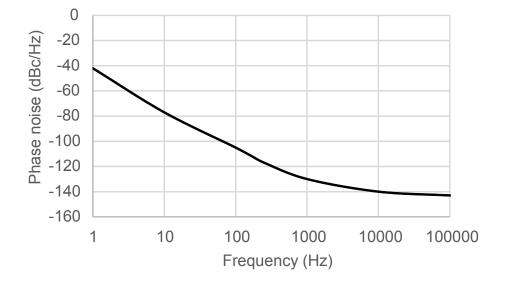
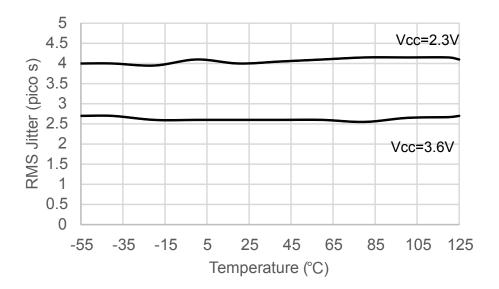
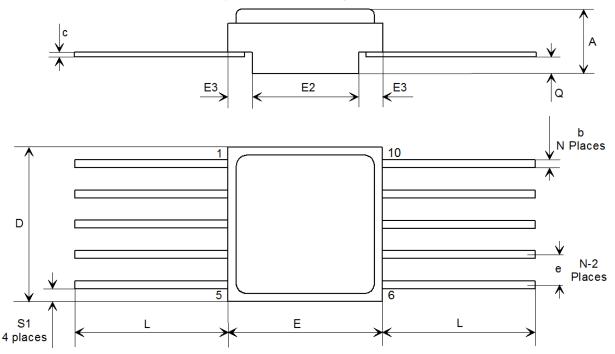



Figure 7. Phase noise, F_{clk} = 16 MHz, V_{cc} = 3.3 V



5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

5.1 Flat-10 package information

Figure 9. Flat-10 package outline

Note:

The upper metallic lid is electrically connected to pin1 (VSS).

Symbol		mm		Inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
A	2.26	2.44	2.62	.089	.096	.103
b	0.38	0.43	0.48	.015	.017	.019
С	0.102	0.127	0.152	.004	.005	.006
D	6.35	6.48	6.60	.250	.255	.260
E	6.35	6.48	6.60	.250	.255	.260
E2	4.32	4.45	4.58	.170	.175	.180
E3	0.88	1.01	1.14	.035	.040	.045
е		1.27			.050	
L	6.35		9.40	.250		.370
Q	0.66	0.79	0.92	.026	.031	.036
S1	0.16	0.485	0.81	.006	.019	.032
Ν		10			10	

Table 7. Flat-10 mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6 Ordering information

Table 8. Ordering information

Order code	Description	Package	Lead finishing	Marking ⁽¹⁾	Packing
RH-OSC04K1	Engineering Model		Gold	RH-OSC04K1	
RHFOSC04K01V	QML-V Flight	Flat-10	Gold	5962F2020701VXC	Conductive strip pack
RHFOSC04K02V			Solder Dip	5962F2020701VXA	

1. Specific marking only. Complete marking includes the following:

• ST logo

• Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)

• Country of origin (FR = France)

Note:

57

Contact your ST sales office for information regarding the specific conditions for products in die form.

7 Other information

7.1 Date code

The date code (date the package was sealed) is structured as follows:

- Engineering model: 3yywwz
- Flight model: yywwz

Where:

yy = last two digits of the year, ww = week digits, z = lot index of the week

7.2 Product documentation

Each product shipment includes a set of associated documentation within the shipment box. This documentation depends on the quality level of the products, as detailed in the table below.

The certificate of conformance is provided on paper whatever the quality level. For QML parts, complete documentation, including the certificate of conformance, is provided on a CDROM.

Quality level	Item		
Engineering model	Certificate of conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Quantity delivered Reference to ST datasheet Reference to TN1181 on engineering models ST Rennes assembly lot ID		
QML-V Flight	Certificate of Conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Serial numbers Group C reference Group D reference Reference to applicable SMD ST Rennes assembly lot ID Quality control inspection (groups A, B, C, D, E) Screening electrical data in/out summary Precap report PIND (particle impact noise detection) test SEM (scanning electronic microscope) inspection report X-ray plates		

Table 9. Product documentation

Revision history

Table 10. Document revision history

Date	Version	Changes
13-May-2020	1	Initial release.

Contents

1	Gene	ral overview	2
2	Maxir	num ratings and operating conditions	3
3	Radia	ations	4
4	Elect	rical characteristics	5
5	Packa	age information	10
	5.1	Flat-10 package information	10
6	Orde	ring information	12
7	Othe	r information	13
	7.1	Date code	13
	7.2	Product documentation.	13
Revi	sion h	listory	14

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved