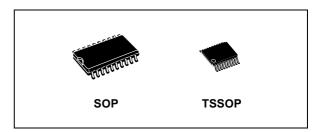


74VHCT541A


OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED)

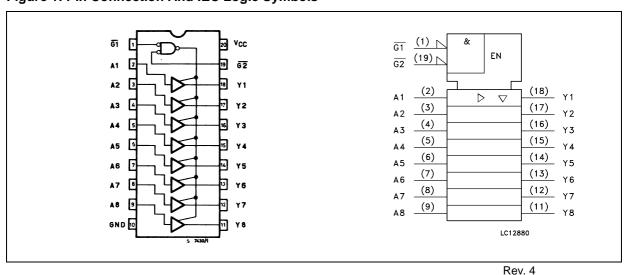
- HIGH SPEED: $t_{PD} = 4.1 \text{ ns}$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{°C}$
- COMPATIBLE WITH TTL OUTPUTS: $V_{IH} = 2V \text{ (MIN.)}, V_{IL} = 0.8V \text{ (MAX)}$
- POWER DOWN PROTECTION ON INPUTS & OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: $t_{PLH} \cong t_{PHL}$
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 4.5V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 541
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.9V (MAX.)

DESCRIPTION

The 74VHCT541A is an advanced high-speed CMOS OCTAL BUS BUFFER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology.

The 3 STATE control gate operates as two input AND such that if either G1 and G2 are high, all eight outputs are in the high impedance state.

Table 1: Order Codes


PACKAGE	T&R
SOP	74VHCT541AMTR
TSSOP	74VHCT541ATTR

In order to enhance PC board layout, the 74VHCT541 offers a pinout having inputs and outputs on opposite sides of the package.

Power down protection is provided on all inputs and outputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V since all inputs are equipped with TTL threshold.

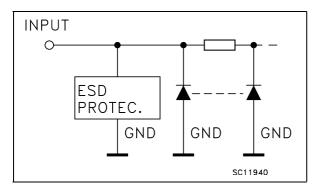

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

December 2004 1/12

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1, 19	G1, G2	Output Enable Inputs
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs
18, 17, 16, 15, 14, 13, 12, 11	Y1 to Y8	Data Outputs
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

	INPUT						
G1	G2	An	Yn				
Н	X	X	Z				
Х	Н	X	Z				
L	L	Н	Н				
L	L	L	L				

X : Don't Care Z : High impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 1)	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 2)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
1) Output in OFF State
2) High or Low State

47/ 2/12

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (see note 1)	0 to 5.5	V
Vo	Output Voltage (see note 2)	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (see note 3) $(V_{CC} = 5.0 \pm 0.5V)$	0 to 20	ns/V

¹⁾ Output in OFF State 2) High or Low State 3) VIN from 0.8V to 2V

Table 6: DC Specifications

		1	est Condition	Value								
Symbol	Parameter	v _{cc}		T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{IH}	High Level Input Voltage	4.5 to 5.5		2			2		2		V	
V _{IL}	Low Level Input Voltage	4.5 to 5.5				0.8		0.8		0.8	V	
V _{OH}	High Level Output	4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V	
	Voltage	4.5	I _O =-8 mA	3.94			3.8		3.7		V	
V _{OL}	Low Level Output	4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V	
	Voltage	4.5	I _O =8 mA			0.36		0.44		0.55	V	
I _{OZ}	High Impedance Output Leakage Current	4.5 to 5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0V \text{ to } 5.5V$			±0.25		± 2.5		± 2.5	μΑ	
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1.0		± 1.0	μΑ	
Icc	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μΑ	
+I _{CC}	Additional Worst Case Supply Current	5.5	One Input at 3.4V, other input at V _{CC} or GND			1.35		1.5		1.5	mA	
I _{OPD}	Output Leakage Current	0	V _{OUT} = 5.5V			0.5		5.0		5.0	μΑ	

Table 7: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		Test Condition			Value							
Symbol	Parameter	V _{CC} (*) C _L			Т	A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	5.0	15			4.1	6.0	1.0	6.5	1.0	6.5	20
t _{PHL}	Time	5.0	50			6.2	8.5	1.0	9.5	1.0	9.5	ns
t _{PZL}	Output Disable	5.0	15	RL = 1KΩ		5.0	7.0	1.0	8.0	1.0	8.0	20
t _{PZH}		5.0	50	KL = IK12		7.5	10.0	1.0	12.0	1.0	12.0	ns
t _{PLZ} t _{PHZ}	Output Enable Time	5.0	50	RL = 1KΩ		7.0	10.0	1.0	12.0	1.0	12.0	ns

^(*) Voltage range is $5.0V \pm 0.5V$

Table 8: Capacitive Characteristics

		Test Condition Value								
Symbol	Parameter		Т	T _A = 25°C			-40 to 85°C		-55 to 125°C	
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			6	10		10		10	pF
C _{OUT}	Output Capacitance			8						pF
C _{PD}	Power Dissipation Capacitance (note 1)			16						pF

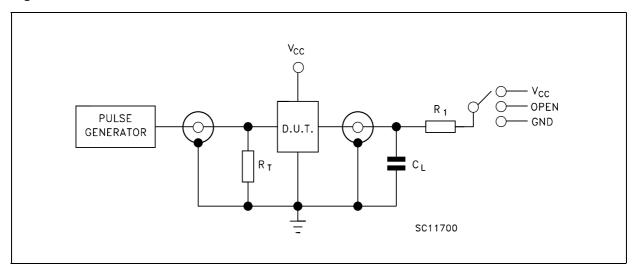
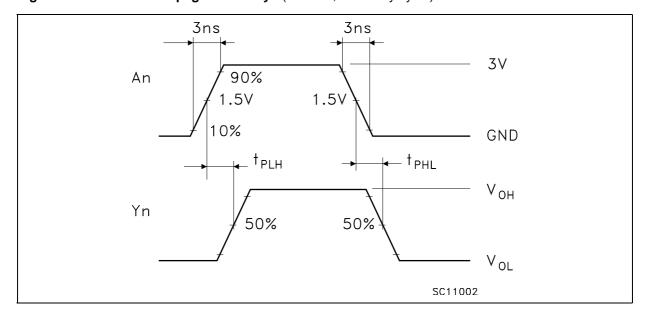
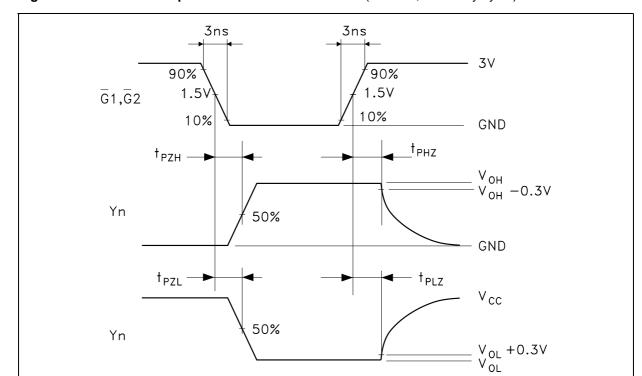

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

Table 9: Dynamic Switching Characteristics

		1	est Condition	Value							
Symbol	Parameter	v _{cc}		T _A = 25°C			-40 to	85°C	-55 to	-55 to 125°C	
	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{OLP}	Dynamic Low		.0		0.9	1.1					
V_{OLV}	Voltage Quiet Output (note 1, 2)	5.0		-1.1	-0.9						
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	C _L = 50 pF	2.0							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				0.8					

¹⁾ Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.0V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.0V. Inputs under test switching: 3.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

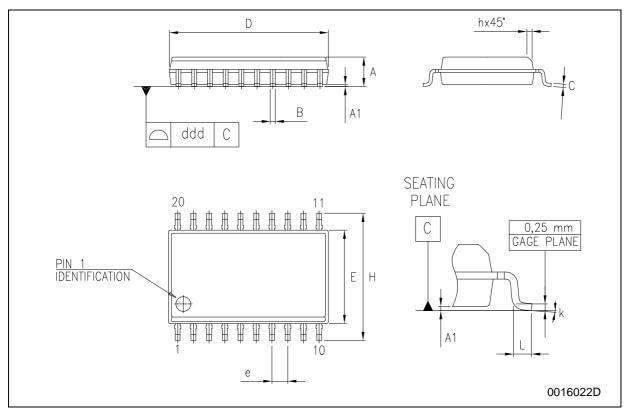

Figure 3: Test Circuit



TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{cc}
t _{PZH} , t _{PHZ}	GND

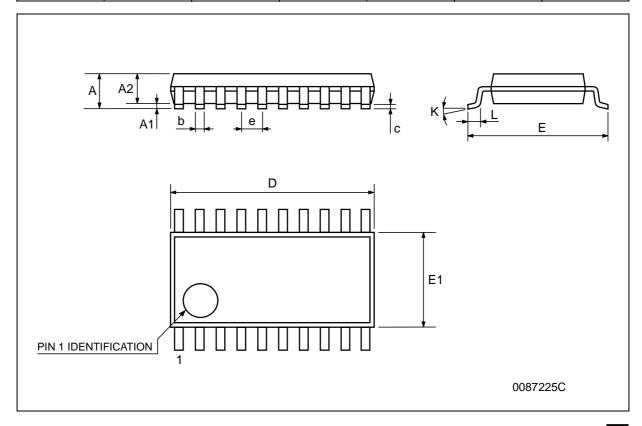
 C_L =15/50pF or equivalent (includes jig and probe capacitance) R_L = R1 = 1K Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 $\Omega)$

Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)

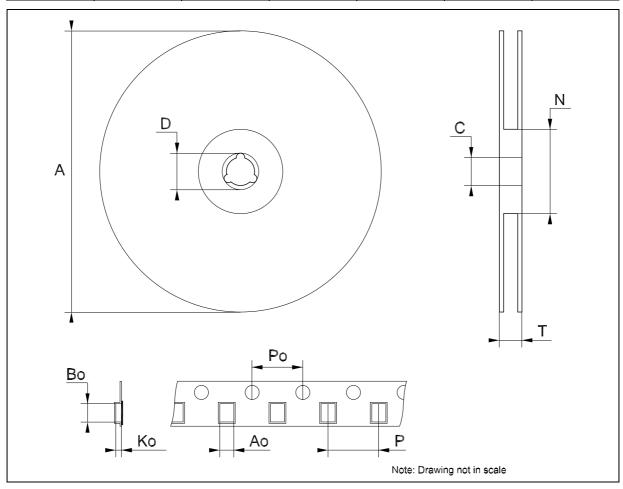


SC13820

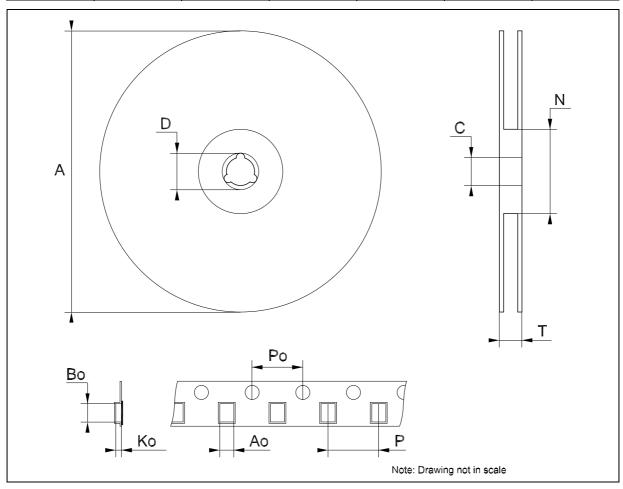
Figure 5: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)


SO-20 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
Α	2.35		2.65	0.093		0.104			
A1	0.1		0.30	0.004		0.012			
В	0.33		0.51	0.013		0.020			
С	0.23		0.32	0.009		0.013			
D	12.60		13.00	0.496		0.512			
Е	7.4		7.6	0.291		0.299			
е		1.27			0.050				
Н	10.00		10.65	0.394		0.419			
h	0.25		0.75	0.010		0.030			
L	0.4		1.27	0.016		0.050			
k	0°		8°	0°		8°			
ddd			0.100			0.004			


TSSOP20 MECHANICAL DATA

DIM.		mm.		inch				
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0079		
D	6.4	6.5	6.6	0.252	0.256	0.260		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		


Tape & Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Ро	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 10: Revision History

Date	Revision	Description of Changes
16-Dec-2004	4	Order Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

