3.3V / 5V ECL D Flip-Flop with Reset and Differential Clock

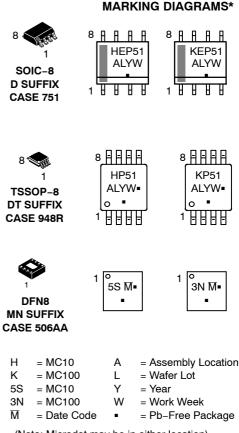
Description

The MC10/100EP51 is a differential clock D flip-flop with reset. The device is functionally equivalent to the EL51 and LVEL51 devices.

The reset input is an asynchronous, level triggered signal. Data enters the master portion of the flip–flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP51 allow the device to be used as a negative edge triggered flip-flop.

The differential input employs clamp circuitry to maintain stability under open input conditions. When left open, the CLK input will be pulled down to V_{EE} and the \overline{CLK} input will be biased at $V_{CC}/2$.

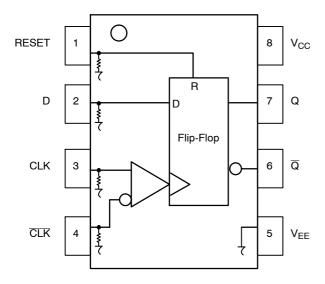
The 100 Series contains temperature compensation.


Features

- 350 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com



(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION						
CLK*, CLK*	ECL Clock Inputs						
Reset*	ECL Asynchronous Reset						
D*	ECL Data Input						
Q, <u>Q</u>	ECL Data Outputs						
V _{CC}	Positive Supply						
V _{EE}	Negative Supply						
EP	(DFN8 only) Thermal exposed pad must be connected to a suf- ficient thermal conduit. Electric- ally connect to the most negative supply (GND) or leave uncon- nected, floating open.						

* Pins will default LOW when left open.

Table 2. TRUTH TABLE

D	R	R CLK				
L	L	Z	L			
Н	L	Z	Н			
Х	Н	Х	L			

Z = LOW to HIGH Transition

Characterist	ics	Va	lue					
Internal Input Pulldown Resistor	75 kΩ							
Internal Input Pullup Resistor	N	/A						
ESD Protection	> 2 kV > 200 V > 2 kV							
Moisture Sensitivity, Indefinite Time	Pb Pkg	Pb-Free Pkg						
	SOIC-8 TSSOP-8 DFN8	Level 1 Level 1 Level 1	Level 1 Level 3 Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0	@ 0.125 in					
Transistor Count		165 D	evices					
Meets or exceeds JEDEC Spec EIA	Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

Table 3. ATTRIBUTES

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage			6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	bient) 0 lfpm SOIC-8 500 lfpm SOIC-8		190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 5. 10EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 3)

		-40°C				25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	26	34	44	26	35	45	28	37	47	mA
V _{OH}	Output HIGH Voltage (Note 4)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 4)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1430		1755	1490		1815	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to –2.2 V.

4. All loading with 50 Ω to V_{CC} – 2.0 V. 5. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

–40°C 25°C 85°C Symbol Characteristic Min Тур Max Min Тур Max Min Тур Max Unit 26 Power Supply Current 34 44 26 35 45 28 37 47 mΑ IEE Output HIGH Voltage (Note 7) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOH VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mν VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV V Input HIGH Voltage Common Mode Range 5.0 2.0 5.0 2.0 5.0 VIHCMR 2.0 (Differential Configuration) (Note 8) Input HIGH Current 150 Ι_Η 150 150 μA Input LOW Current 0.5 0.5 0.5 Ι_{ΙL} μA

Table 6. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 6)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.

7. All loading with 50 Ω to V_{CC} – 2.0 V.

8. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	23	30	40	23	30	40	23	30	40	mA
I_{EE}	Power Supply Current	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 10)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 10)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 11)	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE} ·	+ 2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

Table 7. 10EP DC CHARACTERISTICS, NECL V_{CC} = 0 V; V_{EE} = -5.5 V to -3.0 V (Note 9)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

9. Input and output parameters vary 1:1 with V_{CC}.

10. All loading with 50 Ω to V_{CC} – 2.0 V.

11. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

–40°C 25°C 85°C Symbol Characteristic Min Тур Max Min Тур Max Min Тур Max Unit 26 28 Power Supply Current 34 44 26 35 45 37 47 mΑ IEE Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOH VOL 1355 1605 1355 1605 Output LOW Voltage (Note 13) 1355 1480 1605 1480 1480 mν VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV V Input HIGH Voltage Common Mode Range 2.0 3.3 2.0 3.3 2.0 3.3 VIHCMR (Differential Configuration) (Note 14) Input HIGH Current 150 150 150 Ι_Η μA $|_{|L}$ Input LOW Current 0.5 0.5 0.5 μA

Table 8. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 12)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

12. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.

13. All loading with 50 Ω to V_{CC} – 2.0 V.

14. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

		-40°C				25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current	26	34	44	26	35	45	28	37	47	mA
V _{OH}	Output HIGH Voltage (Note 16)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 16)	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
VIH	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3055		3375	3055		3375	3055		3375	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 9. 100EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 15)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

15. Input and output parameters vary 1:1 with V_CC. V_EE can vary +2.0 V to –0.5 V.

16. All loading with 50 Ω to V_CC – 2.0 V.

17. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	26	34	44	26	35	45	28	37	47	mA
V _{OH}	Output HIGH Voltage (Note 19)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 19)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 20)	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V
l _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 10. 100EP DC CHARACTERISTICS, NECL V_{CC} = 0 V; V_{EE} = -5.5 V to -3.0 V (Note 18)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

18. Input and output parameters vary 1:1 with V_{CC} .

19. All loading with 50 Ω to V_{CC} – 2.0 V. 20. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 11. AC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.0 V to -5.5 V or V_{CC} = 3.0 V to 5.5 V; V_{EE} = 0 V (Note 21)

			−40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)		> 3			> 3			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential CLK, ČLK to Q, Q 10 100 RESET to Q, Q	250 275 300	300 340 380	350 425 450	270 300 325	320 375 400	370 450 475	300 350 350	350 425 425	420 500 500	ps
t _{RR}	Reset Recovery	150			150			150			ps
t _S t _H	Setup Time Hold Time	100 100			100 100	80 40		100 100			ps
t _{PW}	Minimum Pulse Width RESET	500	440		500	440		500	440		ps
t _{JITTER}	Cycle-to-Cycle Jitter (Figure 2)		.2	< 1		.2	< 1		.2	< 1	ps
t _r t _f	Output Rise/Fall Times Q, Q (20% - 80%)	70	120	170	80	130	180	100	150	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

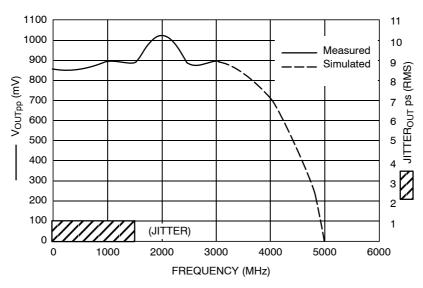


Figure 2. F_{max}/Jitter

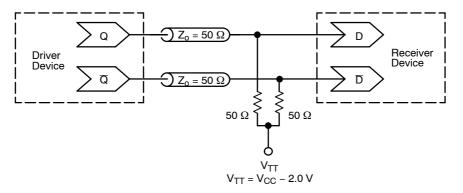


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

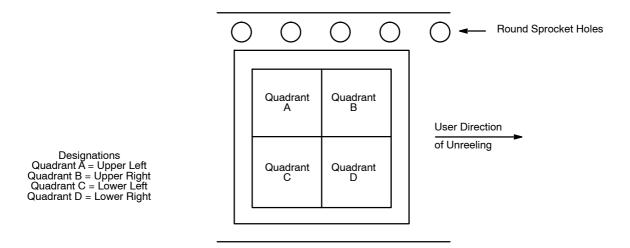
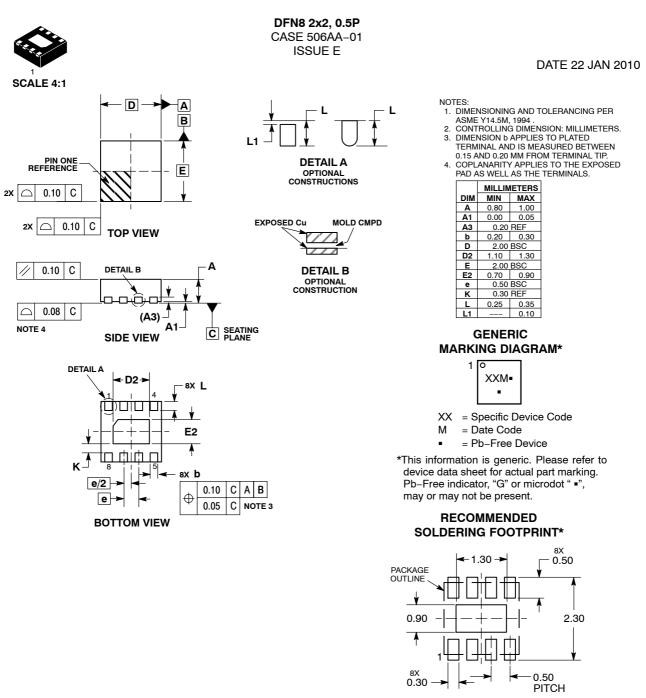


Figure 4. Tape and Reel Pin 1 Quadrant Orientation

ORDERING INFORMATION

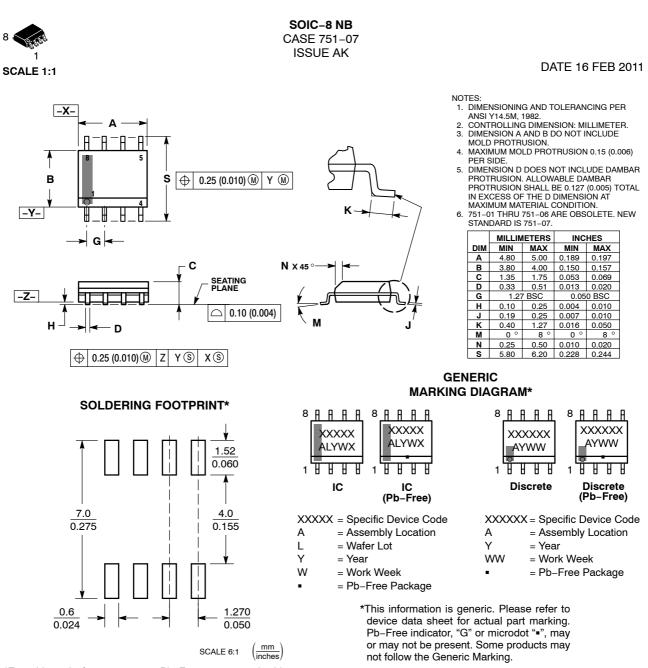
Device	Package	Shipping [†]
MC10EP51DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10EP51DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC10EP51DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC10EP51DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC10EP51MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel (Pin 1 Orientation in Quadrant B, Figure 4)
MC10EP51MNTAG	DFN8 (Pb-Free)	1000 / Tape & Reel (Pin 1 Orientation in Quadrant A, Figure 4)
MC100EP51DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100EP51DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100EP51DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EP51DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EP51MNR4G	DFN8 (Pb–Free)	1000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).



DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON18658D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITC	PAGE 1 OF 1						
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or ccidental damages. ON Semiconductor does not convey any license under	circuit, and specifically					

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. З. COLLECTOR EMITTER 4 5 FMITTER BASE 6. 7. BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7 8. SOURCE STYLE 9 PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3 COLLECTOR, DIE #2 EMITTER, COMMON 4. 5. EMITTER, COMMON BASE, DIE #2 BASE, DIE #1 6. 7. EMITTER, COMMON 8. STYLE 13: PIN 1. N.C 2. SOURCE З. SOURCE GATE 4. 5. DRAIN DRAIN DRAIN 6. 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT З. V10UT TXE 4. 5. RXE 6. VFF GND 7. 8. ACC STYLE 21: CATHODE 1 PIN 1. CATHODE 2 2. 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C 3. REXT 4. GND 5. IOUT IOUT 6. 7. IOUT 8. IOUT STYLE 29: BASE, DIE #1 PIN 1.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 COLLECTOR, #1 2. COLLECTOR, #2 З. COLLECTOR, #2 4 5 BASE #2 EMITTER, #2 6. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN З. DRAIN SOURCE 4. SOURCE 5. 6. GATE 7 GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 OUTPUT 3 GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. GROUND 8. STYLE 14 PIN 1. N-SOURCE N-GATE 2 3 P-SOURCE P-GATE 4. P-DRAIN 5. 6. P-DRAIN N-DRAIN 7. 8. N-DRAIN STYLE 18: PIN 1. ANODE 2. ANODE 3 SOURCE GATE 4. DRAIN 5. 6 DRAIN CATHODE 7 8. CATHODE STYLE 22 PIN 1. I/O LINE 1 COMMON CATHODE/VCC 2 3 COMMON CATHODE/VCC I/O LINE 3 4. COMMON ANODE/GND 5 6. I/O LINE 4 7 1/0 LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. 7. SOURCE 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. 4 SOURCE 2 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4 5 GATE #2 SOURCE, #2 6. GATE, #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS З. THIRD STAGE SOURCE GROUND 4. DRAIN 5. 6. GATE 3 SECOND STAGE Vd 7 FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 2. GATE 1 SOURCE 2 GATE 2 3 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3 ANODE 1 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. 8. CATHODE, COMMON STYLE 19: PIN 1. SOURCE 1 2. GATE 1 SOURCE 2 3. GATE 2 4. DRAIN 2 5. 6. MIRROR 2 DRAIN 1 7. 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND 2 З. COMMON ANODE/GND LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7 LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVLO UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

STYLE 4: PIN 1. ANODE ANODE ANODE З. ANODE ANODE ANODE ANODE COMMON CATHODE STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 COLLECTOR, #2 COLLECTOR, #2 EMITTER, #2 EMITTER #1 7 8. COLLECTOR, #1

2.

4.

5

6.

8.

З.

4.

5.

6.

STYLE 12: PIN 1. SOURCE 2. SOURCE SOURCE GATE 3. 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 16: PIN 1. EMITTER, DIE #1 BASE, DIE #1 2. EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. 8. COLLECTOR, DIE #1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) SOURCE (P) 3. 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER З. COLLECTOR/ANODE COLLECTOR/ANODE 4. CATHODE 5. 6. CATHODE COLLECTOR/ANODE 7 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF З. DASIC_SW_DET 4. GND 5. V MON VBULK 6.

7. VBULK

8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice rticular purpose, nor does ON Semicor	s Industries, LLC dba ON Semiconductor or its subsidiaries in the United States to any products herein. ON Semiconductor makes no warranty, representation nductor assume any liability arising out of the application or use of any product c al or incidental damages. ON Semiconductor does not convey any license unde	or guarantee regarding r circuit, and specifically

SOURCE 1/DRAIN 2

7.

8 GATE 1

EMITTER, #1 BASE, #2

EMITTER, #2

COLLECTOR, #2

COLLECTOR, #2

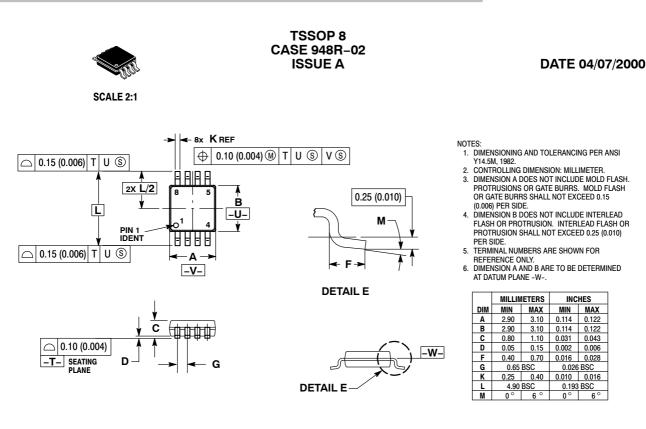
COLLECTOR, #1

COLLECTOR, #1

2.

З.

4.


5.

6.

7. 8

DATE 16 FEB 2011

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1			
ON Semiconductor and where are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer specincations can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond