ON Semiconductor

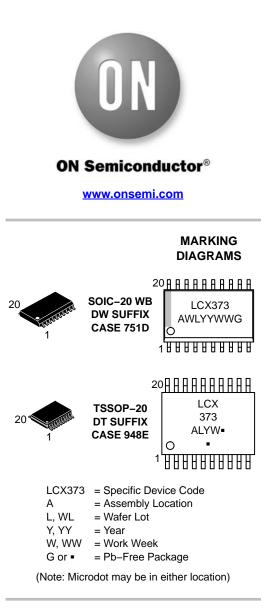
Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

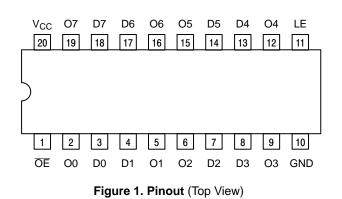
onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Low-Voltage CMOS Octal Transparent Latch

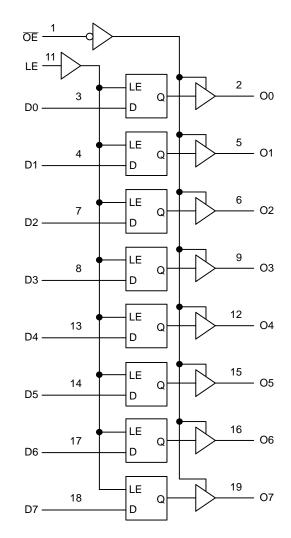

With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

The MC74LCX373 is a high performance, non–inverting octal transparent latch operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX373 inputs to be safely driven from 5 V devices.

The MC74LCX373 contains 8 D-type latches with 3-state outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are enabled. When \overline{OE} is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.


Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in all Three Logic States (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - ◆ Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN NAMES

PINS	FUNCTION
OE	Output Enable Input
LE	Latch Enable Input
D0-D7	Data Inputs
00–07	3–State Latch Outputs

	INPUTS		OUTPUTS	
OE	LE	Dn	On	OPERATING MODE
L L	H H	H L	H L	Transparent (Latch Disabled); Read Latch
L L	L	h I	H L	Latched (Latch Enabled) Read Latch
L	L	Х	NC	Hold; Read Latch
Н	L	Х	Z	Hold; Disabled Outputs
H H	H H	H L	Z Z	Transparent (Latch Disabled); Disabled Outputs
H H	L	h I	Z Z	Latched (Latch Enabled); Disabled Outputs

TRUTH TABLE

= High Voltage Level н

h = High Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition

= Low Voltage Level L

= Low Voltage Level One Setup Time Prior to the Latch Enable High-to-Low Transition L

NC = No Change, State Prior to the Latch Enable High-to-Low Transition

= High or Low Voltage Level or Transitions are Acceptable

X Z = High Impedance State

For I_{CC} Reasons DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_0 \le +7.0$	Output in 3-State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
Ι _{ΙΚ}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}				-24 -12 -8	mA
I _{OL}	LOW Level Output Current $V_{CC} = 3.0 V - 3.6 V$ $V_{CC} = 2.7 V - 3.0 V$ $V_{CC} = 2.3 V - 2.7 V$			+24 +12 +8	mA
T _A	Operating Free–Air Temperature	-40		+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

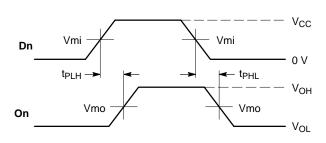
	Characteristic		T _A = −40°C		
Symbol		Condition	Min	Max	Units
VIH	HIGH Level Input Voltage (Note 2)	$2.3~\textrm{V} \leq \textrm{V}_{\textrm{CC}} \leq 2.7~\textrm{V}$	1.7		V
		$2.7 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}$	2.0		
VIL	LOW Level Input Voltage (Note 2)	$2.3 \text{ V} \leq \text{V}_{CC} \leq 2.7 \text{ V}$		0.7	V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$		0.8	
V _{OH}	HIGH Level Output Voltage	$2.3 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$	V _{CC} – 0.2		V
		$V_{CC} = 2.3 \text{ V}; I_{OH} = -8 \text{ mA}$	1.8		
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		
V _{OL}	LOW Level Output Voltage	$2.3 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OZ}	3-State Output Current	$V_{CC} = 3.6 \text{ V}, \text{ V}_{IN} = \text{V}_{IH} \text{ or } \text{V}_{IL}, \\ \text{V}_{OUT} = 0 \text{ to } 5.5 \text{ V}$		±5	μΑ
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

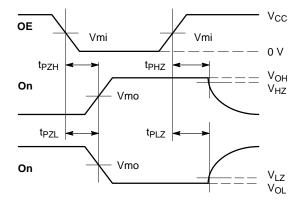
2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; R_L = 500 \Omega$)

					Lin	nits			
					$T_A = -40^\circ$	C to +85°C			
			V _{CC} = 3.3	8 V \pm 0.3 V	V _{CC} =	= 2.7 V	V _{CC} = 2.5	5 V \pm 0.2 V	
			C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay D_n to O_n	1	1.5 1.5	8.0 8.0	1.5 1.5	9.0 9.0	1.5 1.5	9.6 9.6	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PZH} t _{PZL}	Output Enable Time to HIGH and LOW Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	1.5 1.5	10.5 10.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	7.5 7.5	1.5 1.5	8.5 8.5	1.5 1.5	9.0 9.0	ns
ts	Setup TIme, HIGH or LOW D_n to LE	3	2.5		2.5		4.0		
t _h	Hold Time, HIGH or LOW D_n to LE	3	1.5		1.5		2.0		
tw	LE Pulse Width, HIGH	3	3.3		3.3		4.0		
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0					ns

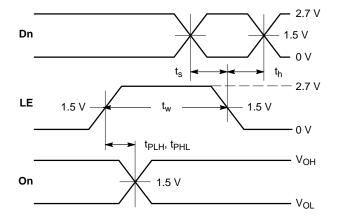
3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.


DYNAMIC SWITCHING CHARACTERISTICS


			T	A = +25°	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	$ \begin{array}{l} {\sf V}_{CC}=3.3 \; {\sf V}, \; {\sf C}_{L}=50 \; {\sf pF}, \; {\sf V}_{IH}=3.3 \; {\sf V}, \; {\sf V}_{IL}=0 \; {\sf V} \\ {\sf V}_{CC}=2.5 \; {\sf V}, \; {\sf C}_{L}=30 \; {\sf pF}, \; {\sf V}_{IH}=2.5 \; {\sf V}, \; {\sf V}_{IL}=0 \; {\sf V} \end{array} $		0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 \; {\sf V}, \; {\sf C}_{L} = 50 \; {\sf pF}, \; {\sf V}_{IH} = 3.3 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \\ {\sf V}_{CC} = 2.5 \; {\sf V}, \; {\sf C}_{L} = 30 \; {\sf pF}, \; {\sf V}_{IH} = 2.5 \; {\sf V}, \; {\sf V}_{IL} = 0 \; {\sf V} \end{array} $		-0.8 -0.6		V

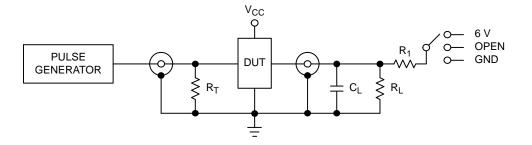
4. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	25	pF

WAVEFORM 1 – PROPAGATION DELAYS $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$



	V _{CC}					
Symbol	3.3 V \pm 0.3 V	2.7 V	2.5 V \pm 0.2 V			
Vmi	1.5 V	1.5 V	V _{CC} /2			
Vmo	1.5 V	1.5 V	V _{CC} /2			
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
V_{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 015 V			

WAVEFORM 3 – LE to On PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES

 t_{R} = t_{F} = 2.5 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns except when noted

Figure 3. AC Waveforms

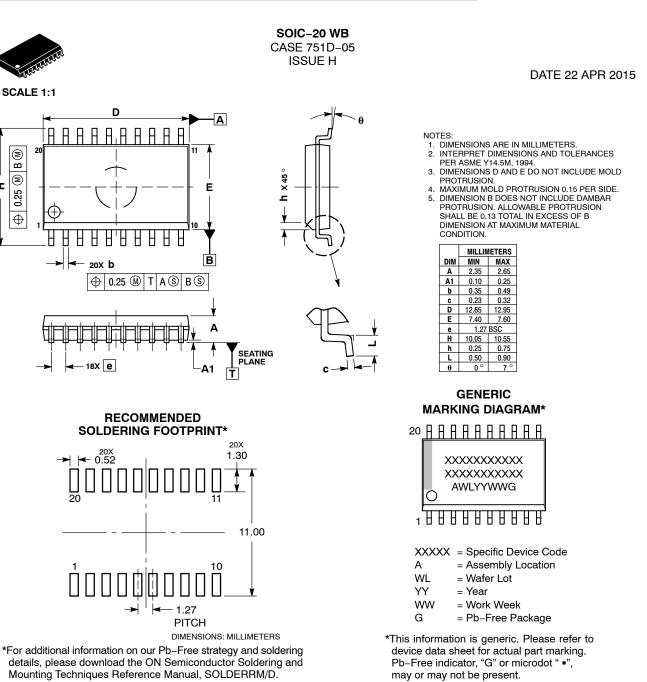
TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V at V _{CC} = 3.3 ± 0.3 V 6 V at V _{CC} = 2.5 ± 0.2 V
Open Collector/Drain t _{PLH} and t _{PHL}	6 V
t _{PZH} , t _{PHZ}	GND

 $C_L = 50 \text{ pF}$ at $V_{CC} = 3.3 \pm 0.3 \text{ V}$ or equivalent (includes jig and probe capacitance) $C_L = 30 \text{ pF}$ at $V_{CC} = 2.5 \pm 0.2 \text{ V}$ or equivalent (includes jig and probe capacitance) $R_L = R_1 = 500 \Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

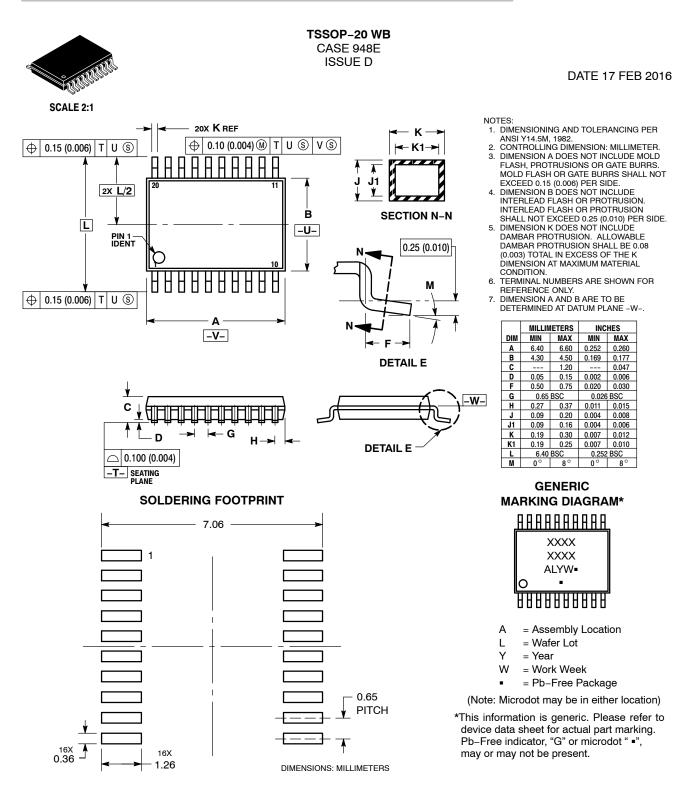
ORDERING INFORMATION


Device	Package	Shipping [†]
MC74LCX373DWR2G	SOIC-20 WB (Pb-Free)	1000 Tape & Reel
MC74LCX373DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX373DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74LCX373DTR2G*	TSSOP-20 (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

т



 DOCUMENT NUMBER:
 98ASB42343B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-20 WB
 PAGE 1 OF 1

 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1		
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥