

Ţ

More Videos ...

Clear List

×

Q

ON Semiconductor®

Energy Efficient Innovations

Select Product...

Design Support

Previously Viewed Products

Products SensL Applications Design Support About MyON

Home > Support > Design Support > Design Resources & Documents > Evaluation/Development Tools

NCP3337MN180GEVB: 1.8 V LDO Regulator Evaluation Board

The demoboard supports the LDO regulator NCP3337 in DFN10 package with fix output voltage 1.8 V. The ENABLE function allows turn the device to low consumption mode with quiescent current below 1 µA. The Power Good pin allows output voltage monitoring. The additional CNR capacitor reduces the output noise.

Size: 45mm x 30mm x 18mm

Features and Applications

Features

- High Accuracy Over Line and Load (±0.9% at 25°C)
- Ultra-Low Dropout Voltage at Full Load (260 mV typ.)
- . No Minimum Output Current Required for Stability
- Low Noise (33 _Vrms w/10 nF Cnr and 52 _Vrms w/out Cnr)
- Low Shutdown Current (< 1 mA)
- Reverse Bias Protected
- 2.9 V to 12 V Supply Range
- Thermal Shutdown Protection
- **Current Limitation**
- Stable with Any Type of Capacitor (including MLCC)
- Power Good Output

Applications

- PCMCIA Card
- Cellular Phones
- · Camcorders and Cameras
- Networking Systems, DSL/Cable Modems
- Cable Set-Top Box
- MP3/CD Players
- DSP Supply
- Displays and Monitors

o d s	SNO C6 C2 VIN SOANO C3 C3 CNO CNO C3 CNO
	RESR CE CO

Technical Documentation Design Resources & Documents Technical Support Sales Support Featured Video Adjustable Output Voltage LDO Regulator Evaluation Board -NCP3337

Evaluation/Development Tool Information								
Product	Status	Compliance	Short Description	Parts Used	Action			
NCP3337MN180GEVB	Active	Pb-free	1.8 V LDO Regulator Evaluation Board	NCP3337MN180R2G	>> Contact Local Sales Office >> Inventory			

Technical Documents								
Туре	Document Title	Document ID/Size	Rev					
Eval Board: BOM	NCP3337MN180GEVB Bill of Materials ROHS Compliant	NCP3337MN180GEVB_BOM_ROHS.PDF - 36.0 KB	0					
Eval Board: Gerber	NCP3337MN180GEVB Gerber Layout Files (Zip Format)	NCP3337MN180GEVB_GERBER.ZIP - 53.0 KB	0					
Eval Board: Schematic	NCP3337MN180GEVB Schematic	NCP3337MN180GEVB_SCHEMATIC.PDF - 24.0 KB	0					
Eval Board: Test Procedure	NCP3337MN180GEVB Test Procedure	NCP3337MN180GEVB_TEST_PROCEDURE.PDF - 684.0 KB	0					
Video	Adjustable Output Voltage LDO Regulator Evaluation Board - NCP3337	WVD17553/D						

Privacy Policy | Terms of Use | Site Map | Careers | Contact Us | Terms and Conditions | Mobile App | Subscribe Copyright © 1999-2018 ON Semiconductor