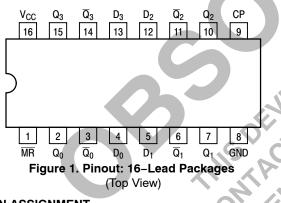
ON Semiconductor

Is Now

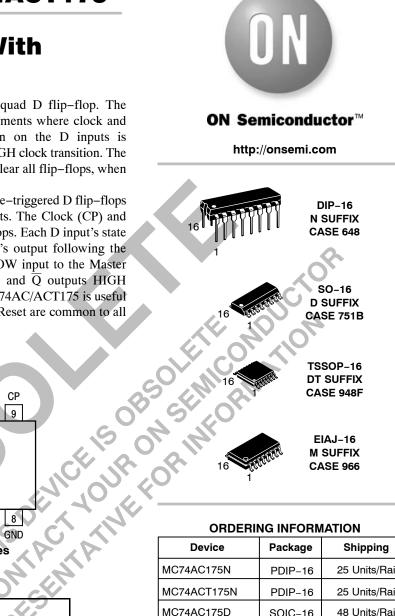
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>


onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Quad D Flip-Flop With Master Reset

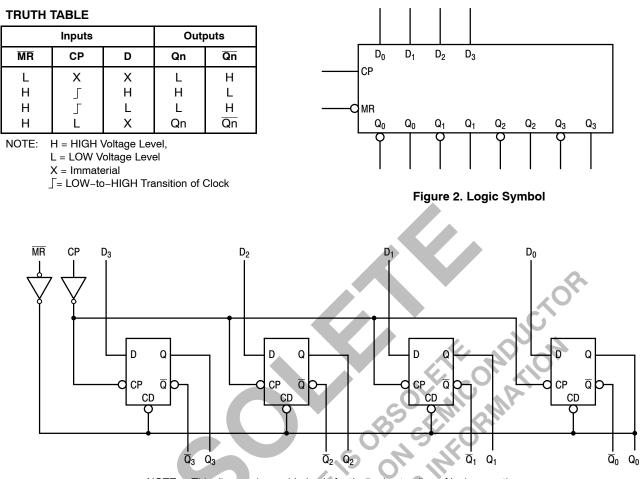
The MC74AC/ACT175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops, when MR is low.


The MC74AC/ACT175 consists of four edge-triggered D flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (\overline{MR}) will force all Q outputs LOW and \overline{Q} outputs HIGH independent of Clock or Data inputs. The MC74AC/ACT175 is useful for applications where the Clock and Master Reset are common to all storage elements.

- Outputs Source/Sink 24 mA
- 'ACT175 Has TTL Compatible Inputs

PIN ASSIGNMENT

PIN	FUNCTION
D ₀ – D ₃	Data Inputs
CP	Clock Pulse Input
MR	Master Reset Input
Q ₀ – Q ₃	Outputs
$\overline{Q}_0 - \overline{Q}_3$	Outputs


ORDERING INFORMATION

Device	Package	Shipping
MC74AC175N	PDIP-16	25 Units/Rail
MC74ACT175N	PDIP-16	25 Units/Rail
MC74AC175D	SOIC-16	48 Units/Rail
MC74ACT175D	SOIC-16	48 Units/Rail
MC74AC175DR2	SOIC-16	2500 Tape & Reel
MC74ACT175DR2	SOIC-16	2500 Tape & Reel
MC74AC175DT	TSSOP-16	96 Units/Rail
MC74ACT175DT	TSSOP-16	96 Units/Rail
MC74AC175DTR2	TSSOP-16	2500 Tape & Reel
MC74ACT175DTR2	TSSOP-16	2500 Tape & Reel
MC74AC175M	EIAJ-16	50 Units/Rail

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

© Semiconductor Components Industries, LLC, 2006 June, 2006 - Rev. 6

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

, AC

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
I _{IN}	DC Input Current, per Pin	±[2 0	mA
IOUT	DC Output Sink/Source Current, per Pin	±[50	mA
Icc	DC V_{CC} or GND Current per Output Pin	±[50	mA
T _{stg}	Storage Temperature	−65 to +150	°C

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

Symbol Parameter Min Тур Min Unit 'AC 2.0 5.0 6.0 V_{CC} Supply Voltage V 'ACT 4.5 5.0 5.5 V_{CC} V_{in}, V_{out} DC Input Voltage, Output Voltage (Ref. to GND) 0 _ V V_{CC} @ 3.0 V _ 150 _ Input Rise and Fall Time (Note 1) V_{CC} @ 4.5 V 40 t_r, t_f _ _ ns/V 'AC Devices except Schmitt Inputs V_{CC} @ 5.5 V _ 25 _ V_{CC} @ 4.5 V 10 _ _ Input Rise and Fall Time (Note 2) ns/V t_r, t_f 'ACT Devices except Schmitt Inputs V_{CC} @ 5.5 V 8.0 _ _ ТJ Junction Temperature (PDIP) 140 °C _ TA °C **Operating Ambient Temperature Range** -40 25 85 Output Current – HIGH -24 mΑ _ IOH Output Current - LOW 24 _ mΑ loL

رر

1.

RECOMMENDED OPERATING CONDITIONS

1. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

	ACTERISTICS						
			74	AC	74AC		P*
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
VIL	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	l _{OUT} = – 50 μA
		3.0 4.5 5.5	- -	2.56 3.86 4.86	2.46 3.76 4.76	V	$\label{eq:VIN} \begin{array}{l} {}^{\star}V_{IN} = V_{IL} \text{ or } V_{IH} \\ & - 12 \text{ mA} \\ I_{OH} & - 24 \text{ mA} \\ & - 24 \text{ mA} \end{array}$
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	l _{OUT} = 50 μA
	× ·	3.0 4.5 5.5	- -	0.36 0.36 0.36	0.44 0.44 0.44	V	$V_{\rm IN} = V_{\rm IL} \text{ or } V_{\rm IH}$ 12 mA $I_{\rm OH}$ 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μA	V _I = V _{CC} , GND
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min

DC CHARACTERISTICS

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

DC CHARACTERISTICS (continued)

			74	٩C	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = -	+25°C	T _A = –40°C to +85°C	Unit	Conditions
			Тур	Guara	anteed Limits		
I _{CC}	Maximum Quiescent Supply Current	5.5	_	8.0	80	μA	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS

				74AC		74	٩C		
Symbol	Parameter	V _{cc} * (V)	T, C	4 = +25° L = 50 p	C F	T _A = - to +8 C _L = 5		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	149 187	-		139 187	22	MHz	3–3
t _{PLH}	Propagation Delay CP to Q _n or Q _n	3.3 5.0	2.0 1.5	1 1	12.0 9.0	2.0 1.0	13.5 9.5	ns	3–6
t _{PHL}	Propagation Delay CP to Q _n or Q̄ _n	3.3 5.0	2.5 1.5	<u> </u>	13.0 9.5	2.0 1.5	14.5 10.5	ns	3–6
t _{PLH}	Propagation Delay MR to Q _n	3.3 5.0	3.0 2.0	5	12.5 9.0	2.5 1.5	13.5 10.0	ns	3–6
t _{PHL}	Propagation Delay MR to Q _n	3.3 5.0	3.0 2.0		11.0 8.5	2.5 1.5	12.5 9.0	ns	3–6
AC OPERA		3	с. С	5					

AC OPERATING REQUIREMENTS

		6.		74AC	74AC		
Symbol	Parameter S C	V _{CC} * (V)		₄ = +25°C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
		*	Тур	Guarantee	d Minimum		
t _s	Set–up Time, HIGH or LOW D _n to CP	3.3 5.0		4.5 3.0	4.5 3.0	ns	3–9
t _h	Hold Time, HIGH or LOW D _n to CP	3.3 5.0		1.0 1.0	1.0 1.0	ns	3–9
t _w	MR Pulse Width Low	3.3 5.0		4.5 3.5	4.5 3.5	ns	3–6
t _w	CP Pulse Width	3.3 5.0		4.5 3.5	5.0 3.5	ns	3–6
t _{rec}	Recovery Time MR to CP	3.3 5.0		0 0	0 0	ns	3–6

*Voltage Range 3.3 V is 3.3 V \pm 0.3 V.

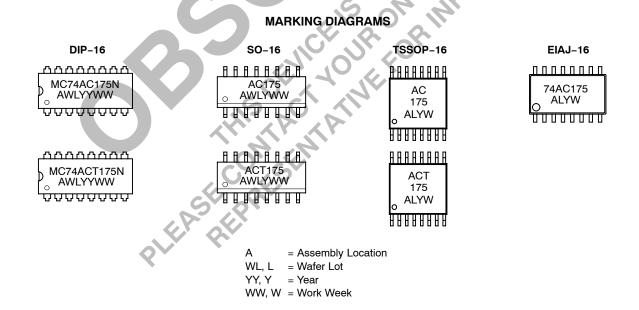
*Voltage Range 5.0 V is 5.0 V ±0.5 V.

DC CHARACTERISTICS

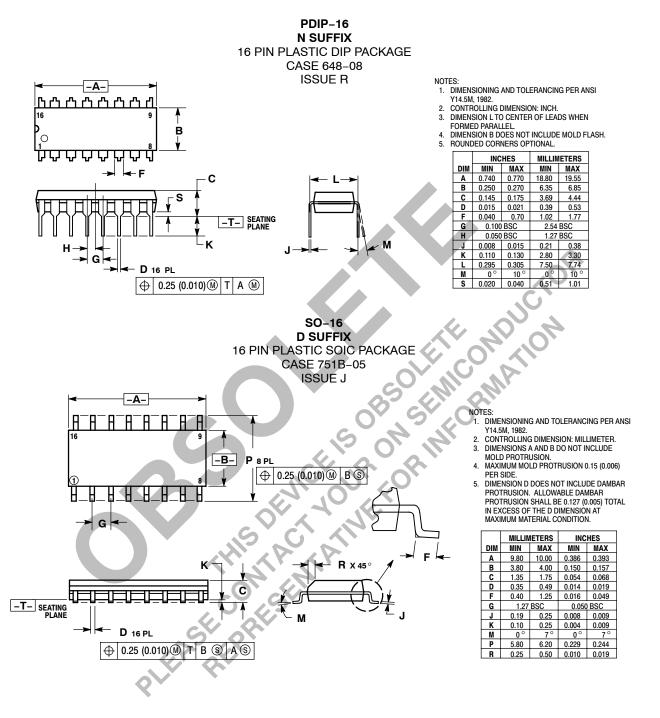
			74A	CT	74ACT		
Symbol	Parameter	V _{CC} (V)			T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = – 50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ - 24 mA I_{OH} - 24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	Ι _{ΟUT} = 50 μΑ
		4.5 5.5	-	0.36 0.36	0.44 0.44	v	*V _{IN} = V _{IL} or V _{IH} 24 mA I _{OH} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_I = V_{CC} - 2.1 \text{ V}$
I _{OLD}	†Minimum Dynamic	5.5	-		75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	SY.	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	S	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND
†Maximum	loaded; thresholds on input associated with o test duration 2.0 ms, one output loaded at a ti		er test.		<i>Sc</i>		
		G		1	74ACT	74ACT	

AC CHARACTERISTICS

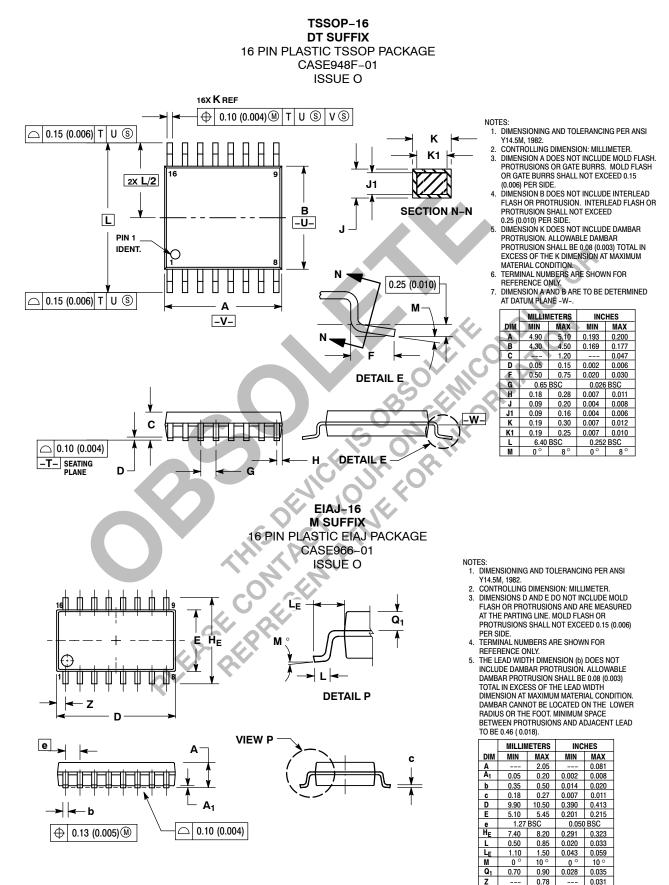
	5.0		7	74ACT		744	СТ		
Symbol	Parameter	V _{cc} * (V)		₄ = +25° _L = 50 p		T _A = - to +8 C _L = \$	35°C	Unit	Fig. No.
	C S		Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	175	-	-	145	-	MHz	3–3
t _{PLH}	Propagation Delay CP to Q _n	5.0	2.0	-	10.0	1.5	11.0	ns	3–6
t _{PHL}	Propagation Delay CP to Q _n	5.0	2.0	-	11.0	1.5	12.0	ns	3–6
t _{PHL}	Propagation Delay $\overline{\text{MR}}$ to \textbf{Q}_n or $\overline{\textbf{Q}}_n$	5.0	2.0	-	9.5	1.5	10.5	ns	3–6


*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

AC OPERATING REQUIREMENTS


				74ACT	74ACT		
Symbol	Parameter	V _{CC} * (V)	T,∕ C	₄ = +25°C L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaranteed	d Minimum		
t _s (H) (L)	Set–up Time, HIGH or LOW D _n to CP	5.0	_	2.0 2.5	2.0 2.5	ns	3–9
t _h	Hold Time, HIGH or LOW D _n to CP	5.0	_	1.0	1.0	ns	3–9
t _w	MR Pulse Width, LOW	5.0	_	3.0	4.0	ns	3–6
t _w	CP Pulse Width, HIGH or LOW	5.0	-	3.0	3.5	ns	3–6
t _{rec}	Recovery Time MR to CP	5.0	-	0	0	ns	3–6
*Voltage Rang	ge 5.0 V is 5.0 V ±0.5 V.				~),	
CAPACITAN	ICE			~	<u></u>		

CAPACITANCE


Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45.0	рF	V _{CC} = 5.0 V

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use persons, and reasonable attorney fees andignet design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative