5V TTL to Differential ECL Translator

Description

The MC10ELT/100ELT24 is a TTL to differential ECL translator. Because ECL levels are used a +5 V, -5.2 V (or -4.5 V) and ground are required. The small outline 8-lead package and the single gate of the ELT24 makes it ideal for those applications where space, performance and low power are at a premium.

The 100 Series contains temperature compensation.

Features

- 0.8 ns t_{PHL}, 0.95 ns t_{PLH} Typical Propagation Delay
- PNP TTL Inputs for Minimal Loading
- Flow Through Pinouts
- Operating Range: $V_{CC} = 4.5$ V to 5.5 V; $V_{EE} = -4.2$ V to -5.5 V with GND = 0 V
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

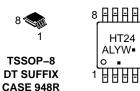
ON Semiconductor®

www.onsemi.com

8 8 8 8 8 HLT24

ALYW

Η Η


888

MARKING DIAGRAMS*

1 Η

CASE 751

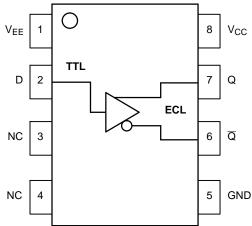
8 <u>A A A A</u>

Η Η

KLT24

ALYW

DFN8 **MN SUFFIX** CASE 506AA


Н	= MC10	Α	= Assembly Location
Κ	= MC100	L	= Wafer Lot
5E	= MC10	Υ	= Year
2T	= MC100	W	= Work Week
М	= Date Code	•	= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

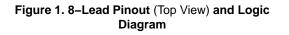


Table 2. ATTRIBUTES

Table 1. PIN DESCRIPTION

Pin	Function
Q, <u>Q</u>	ECL Differential Outputs*
D	TTL Input
V _{CC}	Positive Supply
V _{EE}	Negative Supply
GND	Ground
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be con- nected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

*Output state undetermined when inputs are open.

Characteristi	cs	Value
Internal Input Pulldown Resistor		N/A
Internal Input Pullup Resistor		N/A
ESD Protection	Human Body Model Machine Model	> 4 kV > 200 V
Moisture Sensitivity, Indefinite Time C	Out of Drypack (Note 1)	Pb-Free Pkg
	SOIC-8 TSSOP-8 DFN8	Level 1 Level 3 Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
Transistor Count		51 Devices
Meets or exceeds JEDEC Spec EIA/	JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	$V_{EE} = -5.0 V$	7	V
V _{EE}	Negative Power Supply	GND = 0 V	$V_{CC} = +5.0 V$	-8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to V _{CC}	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SO-8 SO-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 ±5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb–Free	<2 to 3 sec @ 260°C		265	°C
θJC	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. 10ELT SERIES NECL OUTPUT DC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$; GND = 0 V (Note 3)

		–40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	V _{CC} Power Supply Current			7.0		4.5	7.0			7.0	mA
I _{EE}	Power Supply Current			18		12.5	18			18	mA
V _{OH}	Output HIGH Voltage (Note 4)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 4)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

3. Output parameters vary 1:1 with GND. V_{CC} can vary 4.5 V / 5.5 V. V_{EE} can vary -4.2 V / -5.5 V.

4. Outputs are terminated through a 50 Ω resistor to GND – 2 V.

Table 5. 100ELT SERIES NECL OUTPUT DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = -5.0 V; GND = 0 V (Note 5)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	V _{CC} Power Supply Current			7.0		4.5	7.0			7.0	mA
I _{EE}	Power Supply Current			18		12.5	18			18	mA
V _{OH}	Output HIGH Voltage (Note 6)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 6)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

5. Output parameters vary 1:1 with GND. V_{CC} can vary 4.5 V / 5.5 V. V_{EE} can vary -4.2 V / -5.5 V.

6. Outputs are terminated through a 50 Ω resistor to GND – 2 V.

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V			20	μΑ
I _{IHH}	Input HIGH Current	V _{IN} = 7.0 V			100	μA
I _{IL}	Input LOW Current	V _{IN} = 0.5 V			-0.6	mA
V _{IK}	Input Clamp Diode Voltage	I _{IN} = -18 mA			-1.2	V
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V

Table 6. TTL INPUT DC CHARACTERISTICS V_{CC} = 4.5 V to 5.5 V; V_{EE} = -4.2 V to -5.5 V; GND = 0.0 V; T_A = -40°C to +85°C

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 7. AC CHARACTERISTICS $V_{CC} = \ 4.5 \ V$ to 5.5 V; $V_{EE} = -4.2 \ V$ to $-5.5 \ V$; GND = 0.0 V

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					400					MHz
t _{PLH}	Propagation Delay (Note 7) 1.5 V to 50%	0.5		2.0	0.5	0.95	2.0	0.5		2.0	ns
t _{PHL}	Propagation Delay (Note 7) 1.5 V to 50%	0.5		2.0	0.5	0.8	2.0	0.5		2.0	ns
t _{JITTER}	Random Clock Jitter (RMS)					2.5					ps
t _r /t _f	Output Rise/Fall Time (20–80%)	0.25		1.25	0.25		1.25	0.25		1.25	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

7. Specifications for standard TTL input signal.

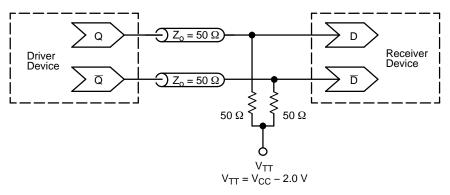
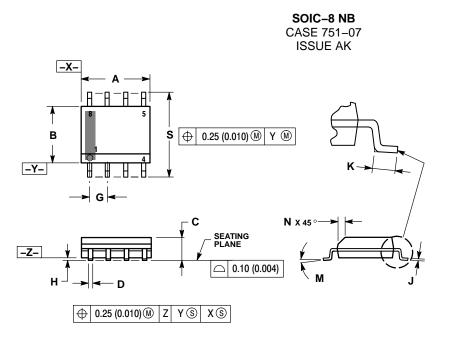


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

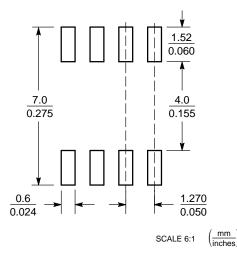

Device	Package	Shipping [†]
MC10ELT24DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10ELT24DR2G	SOIC–8 (Pb–Free)	2500 / Tape & Reel
MC10ELT24DTG	TSSOP–8 (Pb–Free)	100 Units / Rail
MC10ELT24DTR2G	TSSOP–8 (Pb–Free)	2500 / Tape & Reel
MC10ELT24MNR4G	DFN8 (Pb–Free)	1000 / Tape & Reel
MC100ELT24DG	SOIC–8 (Pb–Free)	98 Units / Rail
MC100ELT24DR2G	SOIC–8 (Pb–Free)	2500 / Tape & Reel
MC100ELT24DTG	TSSOP–8 (Pb–Free)	100 Units / Rail
MC100ELT24DTR2G	TSSOP–8 (Pb–Free)	2500 / Tape & Reel
MC100ELT24MNR4G	DFN8 (Pb–Free)	1000 / Tape & Reel

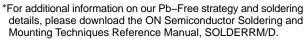
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	_	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

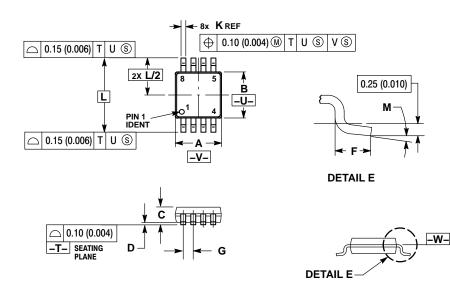
PACKAGE DIMENSIONS



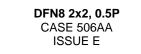

NOTES:

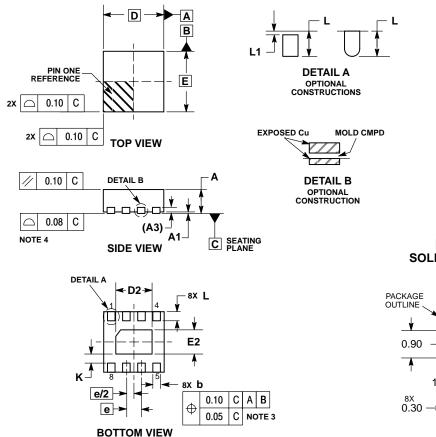
- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAGE
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
- STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
κ	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244


SOLDERING FOOTPRINT*

PACKAGE DIMENSIONS

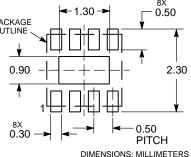

TSSOP-8 DT SUFFIX CASE 948R-02 **ISSUE A**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 DIMENSION S OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15
- On GATE DOTAS SHALL NOT EXCEED 0.13
 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90	BSC	0.193	BSC
M	0 °	6 °	00	6 °

PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.20 MM FROM TERMINAL TIP.
 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
Α	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.00 BSC	
D2	1.10	1.30
E	2.00 BSC	
E2	0.70	0.90
е	0.50 BSC	
Κ	0.30 REF	
L	0.25	0.35
L1		0.10

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the image are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Supp Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative