

M74HC259

8-bit addressable latch

Datasheet - production data

Features

- High speed: t_{PD} = 20 ns (typ.) at V_{CC} = 6 V
- Low power dissipation: $I_{CC} = 4 \ \mu A \ (max.) \ at \ T_A = 25 \ ^{\circ}C$
- High noise immunity: $V_{NIH} = V_{NIL} = 28 \% V_{CC}$ (min.)
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 4 \text{ mA (min)}$
- Balanced propagation delays: t_{PLH} ~= t_{PHL}
- Wide operating voltage range: V_{CC} (OPR) = 2 V to 6 V
- Pin and function compatible with 74 series 259
- ESD performance
 - CDM: 1 kV
 - HBM: 1.5 kV
 - MM: 200 V

Description

The M74HC259 is a high-speed CMOS 8-bit addressable latch manufactured with silicon gate C^2 MOS technology.

The M74HC259 has single data input (D) 8 latch outputs (Q0-Q7), 3 address inputs (A, B, and C), common enable input (E), and a common

CLEAR input. To operate this device as an

addressable latch, data is held on the D input, and the address of the latch into which the data is to be entered is held on the A, B, and C inputs.

When ENABLE is taken low, the data flows

through to the address outputs. The data is stored on the positive-going edge of the

ENABLE pulse. All unaddressed latches will

data into the latches, the ENABLE should be held high (inactive) while the address lines are

changing. If ENABLE is held high and

changes on the data or address inputs. To eliminate the possibility of entering erroneous

CLEAR is taken low, all eight latches are

cleared to the low state. If ENABLE is low, all

remain unaffected. With ENABLE in the high state, the device is deselected and all latches remain in their previous state, unaffected by

latches except the addressed latch will be cleared. The addressed latch will instead follow the D input, effectively implementing a 3-to-8 line decoder.

All inputs are equipped with protection circuits to guard against static discharge and transient excess voltage.

Table 1: Device su	ummary
--------------------	--------

Order code	Temperature range	Package	Packaging	Marking
M74HC259YRM13TR ⁽¹⁾	-40 °C to +125 °C	SO16 (automotive grade) ¹	Tape and reel	74HC259Y
M74HC259RM13TR	-55 °C to +125 °C	SO16	Tape and reel	74HC259
M74HC259TTR	-55 °C to +125 °C	TSSOP16	Tape and reel	HC259
M74HC259YTTR ¹	-40 °C to +125 °C	TSSOP16 (automotive grade) ¹	Tape and reel	HC259Y

Notes:

⁽¹⁾Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

November 2013

DocID001933 Rev 2

This is information on a product in full production.

Contents

Contents

1	Pin info	ormation	5
2	Functio	onal description	6
3	Electric	cal characteristics	8
4	Packag	je information	15
	4.1	SO16 package information	15
	4.2	TSSOP16 package information	17
5	Revisio	on history	18

List of tables

Table 1: Device summary	1
Table 2: Pin description	5
Table 3: Truth table	6
Table 4: Absolute maximum ratings	8
Table 5: Recommended operating conditions	8
Table 6: DC specifications	9
Table 7: AC electrical characteristics ($C_L = 50 \text{ pF}$, input $t_r = t_f = 6 \text{ ns}$)	10
Table 8: Capacitive characteristics	11
Table 9: Plastic SO16 package mechanical data	16
Table 10: TSSOP16 package mechanical data	17
Table 11: Document revision history	18

List of figures

Figure 1: Pin connections and IEC logic symbols	5
Figure 2: Input and output equivalent circuit	6
Figure 3: Logic diagram	7
Figure 4: Test circuit	.11
Figure 5: Waveform 1: propagation delay time (f = 1 MHz; 50% duty cycle)	.12
Figure 6: Waveform 2: propagation delay time (f = 1 MHz; 50% duty cycle)	.12
Figure 7: Waveform 3: minimum pulse width (G), setup and hold time (D to G) (f = 1 MHz; 50% duty	
cycle)	.13
Figure 8: Waveform 4: minimum pulse width (CLR) (f = 1 MHz; 50% duty cycle)	.13
Figure 9: Waveform 5: setup and hold time (f = 1 MHz; 50 duty cycle)	.14
Figure 10: Waveform 6: input waveforms (f = 1 MHz; 50% duty cycle)	.14
Figure 11: Plastic SO16 package mechanical outline	.15
Figure 12: TSSOP16 package mechanical outline	.17

1 Pin information

Table 2: Pin	description
--------------	-------------

Pin number	Symbol	Name and function
1, 2, 3	A, B, C	Address inputs
4, 5, 6, 7, 9, 10, 11, 12	Q0 to Q7	Latch outputs
13	D	Data input
14	ENABLE	Latch enable input (active low)
15	CLEAR	Conditional reset input (low)
8	GND	Ground (0 V)
16	V _{cc}	Positive supply voltage

2 Functional description

Table	3:	Truth	table

Inj	outs			
CLEAR	ENABLE	Outputs of addressed latch	Other output	Function
Н	L	D	Qi0	Addressable latch
Н	Н	Qi0 Qi0		Memory
L	L	D	L	8-line demulitplexer
L	Н	L	L	Clear all bits to "L"

D: the level at the data input

Qi0: the level before the indicated steady state input conditions where established (i = 0, 1,, 7)

Inputs selected				
С	В	A	Latch addressed	
L	L	L	Q0	
L	L	Н	Q1	
L	н	L	Q2	
L	Н	Н	Q3	
Н	L	L	Q4	
н	L	Н	Q5	
Н	Н	L	Q6	
Н	Н	Н	Q7	

Figure 2: Input and output equivalent circuit

This logic diagram has not been used to estimate propagation delays.

3 Electrical characteristics

Stressing the device above the ratings listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions above those indicated in the operating sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	-0.5 to +7	V
Vi	DC input voltage	-0.5 to V_{CC} to +0.5	V
Vo	DC output voltage	-0.5 to V_{CC} to +0.5	V
I _{IK}	DC input diode current	±20	mA
I _{ОК}	DC output diode current	±20	mA
Ι _Ο	DC output current	±25	mA
I _{CC} or I _{GND}	DC VCC or ground current	±50	mA
P _D	Power dissipation	500 ⁽¹⁾	mW
T _{stg}	Storage temperature	-65 to +150	°C
TL	Lead temperature (10 sec.)	300	°C

Table 4: Absolute maximum ratings

Notes:

 $^{(1)}$ 500 mW at 65 °C; derate to 300 mW by 10 mW/°C from 65 °C to 85 °C

Symbol	Parameter		Value	Unit
Vcc	Supply voltage	Supply voltage		V
VI	Input voltage		0 to V_{CC}	V
Vo	Output voltage		0 to V_{CC}	V
T _{op}	Operating temperature		-55 to 125	°C
		$V_{CC} = 2.0 V$	0 to 1000	ns
t _r , t _f	Input rise and fall time	$V_{CC} = 4.5 V$	0 to 500	ns
	$V_{CC} = 6.0 V$		0 to 400	ns

Table 5: Recommended operating conditions

		Test condition		Value							
Symbol	Parameter	Vcc		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V) Mi	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
		2.0		1.5			1.5		1.5		
V _{IH}	High-level input	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
		2.0				0.5		0.5		0.5	
VIL	Low-level input voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{он}	High-level output voltage	2.0	I _O = -20 μA	1.9	2.0		1.9		1.9		-
		4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O = -4.0 mA	4.18	4.31		4.13		4.10		
		6.0	l _o = -5.2 mA	5.68	5.8		5.63		5.60		
Vol	Low-level output voltage	2.0	l ₀ = 20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	l ₀ = 20 μA		0.0	0.1		0.1		0.1	
		4.5	l ₀ = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0	l ₀ = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input leakage current	6.0	V _I = V _{CC} or GND			±0.1		±1		±1	μA
I _{CC}	Quiescent supply current	6.0	V _I = V _{CC} or GND			4		40		80	μA

Table 6: DC specifications

Electrical characteristics

Table 7: AC electrical characteristics (C_L = 50 pF, input t_r = t_f = 6 ns)

Symbol Parameter condition $T_A = 2^{\circ} C$ -40 $\circ 8^{\circ} C$ -55 $\circ 12^{\circ} C$ $T_L + T_{FH}$ Output transition time $V_C (V)$ Min. Typ. Max. Min. Max. Min. Max. $T_L + T_{FH}$ Output transition time 2.0 30 75 95 110 $T_L + T_{FH}$ Output transition time 4.5 8 15 19 22 6.0 7 13 16 95 10 210 t_{PLH} tent. Propagation delay time (DATA - Q) 4.5 18 28 35 42 t_{PLH} tent. Propagation delay time (DATA - Q) 4.5 18 28 35 42 t_{PL} tent. Propagation delay time (A, B, C - Q) 2.0 76 190 240 285 t_{PLH} tent. Propagation delay time (G - Q) 2.0 24 38 48 45 t_{PLH} tent. Propagation delay time (CLEAR - Q) 2.0 45	Unit ns ns ns
vcc (V) Min. Typ. Max. Min. Max. Min. Max. t_{TLH} transition time 2.0 30 75 95 110 t_{TLH} transition time 4.5 8 15 19 22 6.0 7 13 16 19 22 6.0 7 13 16 19 22 t_{PLH} transition time 2.0 56 140 175 210 t_{PLH} transition time 2.0 56 140 175 210 t_{PLH} transition time 2.0 76 190 240 285 t_{PL} transition time 2.0 76 190 240 285 t_{PL} transition time 2.0 24 38 48 57 t_{A} , B, C - Q) 4.5 19 30 38 45 t_{PLH} transition time 2.0 57 150 190 225 t_{Q} 2.0 4.5 11	ns ns ns
$ t_{\text{TLH}} t_{\text{TH}} t_{\text{TLH}} t_{\text{TH}} t_{\text{TASISION}} = \begin{cases} 2.0 & 30 & 75 & 95 & 110 \\ 4.5 & 8 & 15 & 19 & 22 \\ 6.0 & 7 & 13 & 16 & 19 \\ 6.0 & 7 & 13 & 16 & 19 \\ 1.0 & 175 & 210 \\ 4.5 & 18 & 28 & 35 & 42 \\ 6.0 & 15 & 24 & 30 & 36 \\ 6.0 & 15 & 24 & 30 & 36 \\ 6.0 & 15 & 24 & 30 & 36 \\ 1.0 & 15 & 24 & 30 & 36 \\ 1.0 & 15 & 24 & 30 & 36 \\ 1.0 & 10 & 240 & 285 \\ 1.0 & 10 & 20 & 32 & 41 & 48 \\ 1.0 & 10 & 20 & 32 & 41 & 48 \\ 1.0 & 10 & 20 & 32 & 41 & 48 \\ 1.0 & 10 & 20 & 32 & 41 & 48 \\ 1.0 & 10 & 20 & 32 & 41 & 48 \\ 1.0 & 10 & 10 & 225 \\ 1.0 & 10 & 10 & 225 & 38 \\ 1.0 & 10 & 16 & 26 & 32 & 38 \\ 1.0 & 16 & 26 & 32 & 38 \\ 1.0 & 16 & 26 & 32 & 38 \\ 1.0 & 16 & 26 & 32 & 38 \\ 1.0 & 16 & 26 & 32 & 38 \\ 1.0 & 16 & 26 & 32 & 38 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 13 & 20 & 25 & 30 \\ 1.0 & 10 & 10 & 23 \\ 1.0 & 10 & 10 & 10 $	ns ns
$ t_{\text{TLH}} t_{\text{THL}} \left(\begin{array}{c} \text{Output} \\ \text{transition time} \end{array} \right) \left(\begin{array}{c} 4.5 \\ 6.0 \\ 6.0 \\ 7 \\ 13 \\ 6.0 \\ 7 \\ 13 \\ 16 \\ 19 \\ 19 \\ 16 \\ 175 \\ 10 \\ 10 \\ 175 \\ 10 \\ 10 \\ 175 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	ns ns
Image: second	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns
	ns
tplt tplt Propagation delay time (A, B, C - Q) 2.0 76 190 240 285 $t_{A,B,C-Q}$ 4.5 24 38 48 57 t_{PLH} tplt Propagation delay time (G - Q) 2.0 20 32 41 48 t_{PLH} tplt Propagation delay time (G - Q) 2.0 57 150 190 225 4.5 19 30 38 45 6.0 16 26 32 38 t_{PLH} tplt Propagation delay time (C - Q) 2.0 45 115 145 175 t_{PLH} tplt Propagation delay time (C - Q) 2.0 45 115 23 29 35 t_{PLH} tplt Minimum pulse (C - Q - 2) 2.0 28 75 90 115 $t_{W(L)}$ Minimum pulse width 2.0 28 75 90 115 $t_{W(L)}$ Minimum pulse width 2.0 24 75 90 115 $t_{W(L)}$ Minimum pulse width	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{1}{1} + \frac{1}{1} + \frac{1}$	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns
Minimum pulse width 2.0 6 13 16 20 tw(L) Minimum pulse width 2.0 24 75 90 115	
Minimum pulse width 2.0 24 75 90 115 tw(L) 4.5 6 15 19 23	
t _{W(L)} width 4.5 6 15 19 23	
	ns
(CLEAR) 6.0 5 13 16 20	
2.0 12 50 60 75	ns
ts Minimum setup 4.5 3 10 12 15	
6.0 3 9 11 13	
2.0 25 30 40	
ts Minimum setup 4.5 5 6 8	ns
6.0 5 5 7	
Minimum hold 2.0 5 5 5	
t _h time (DATA) 4.5 5 5 5	ns
6.0 5 5 5	
Minimum hold 2.0 0 0 0	
t _h time (A, B, C) 4.5 0 0 0	ns
6.0 0 0 0	

DocID001933 Rev 2

		Test				Value	•			
Symbol	Parameter	condition	Т	_ _A = 25°	С	-40 to	985°C	-55 to	125°C	Unit
		V _{cc} (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input capacitance	5.0		5	10		10		10	pF
C _{PD}	Power dissipation capacitance ⁽¹⁾	5.0		66						pF

Table 8: Capacitive characteristics

Notes:

 $^{(1)}C_{PD}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load (refer to the test circuit). The average operating current can be obtained by the following equation: $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

Figure 4: Test circuit

- 1. $R_T = Z_{OUT}$ of pulse generator (typically 50 ohm) 2. $C_L = 50 \text{ pF}$ or equivalent (includes jig and probe capacitance)

Figure 6: Waveform 2: propagation delay time (f = 1 MHz; 50% duty cycle)

12/19

Figure 7: Waveform 3: minimum pulse width (G), setup and hold time (D to G) (f = 1 MHz; 50% duty cycle)

Figure 9: Waveform 5: setup and hold time (f = 1 MHz; 50% duty cycle)

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 SO16 package information

Figure 11: Plastic SO16 package mechanical outline

Package information

Table 9: Plastic SO16 package mechanical data

	mm.			inches				
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1	45 ° (typ.)							
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
M			0.62			0.024		
S	8 ° (max.)							

16/19

DocID001933 Rev 2

4.3

TSSOP16 package information

Figure 12: TSSOP16 package mechanical outline

Table 10: TSSOP16 package mechanical data

		mm.		inches				
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.		
A			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
с	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

5 Revision history

Table 11: Document revision history

Date	Version	Change
Jul-2001	1	Initial release
		Added ESD performance to Section "Features"
01-Nov-2013	2	Added automotive grade order codes, temperature ranges and marking information to <i>Table 1: "Device summary"</i>
		Removed DIP16 package option
		Revised document presentation, minor textual updates

Please Read Carefully

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

