MC10ELT21, MC100ELT21

5 V Differential PECL to TTL Translator

Description

The MC10ELT/100ELT21 is a differential PECL to TTL translator. Because PECL (Positive ECL) levels are used, only +5 V and ground are required. The small outline 8 -lead package and the single gate of the ELT21 makes it ideal for those applications where space, performance and low power are at a premium.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

Features

- 3.5 ns Typical Propagation Delay
- 24 mA TTL Output
- Flow Through Pinouts
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V with $\mathrm{GND}=0 \mathrm{~V}$
- Q Output Will Default LOW with Inputs Left Open or < 1.3 V
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$$
\begin{array}{lll}
\mathrm{H} & =\text { MC10 } & \text { A } \\
\mathrm{K} & =\text { MC100 } & \\
& \mathrm{L} & =\text { Wafem Lot Location } \\
& \mathrm{Y} & =\text { Year } \\
& \mathrm{W} & =\text { Work Week } \\
& \text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC10ELT21, MC100ELT21

Table 1. PIN DESCRIPTION

Pin	Function
Q0	TTL Outputs
DO, DO	PECL Differential Outputs
$V_{B B}$	Reference Voltage Output
$V_{C C}$	Positive Supply
GND	Ground
NC	No Connect

Figure 1. 8-Lead Pinout and Logic Diagram
(Top View)
Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	$50 \mathrm{k} \Omega$
Internal Input Pullup Resistor	N / A
ESD Protection	Human Body Model

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	PECL Power Supply	GND $=0 \mathrm{~V}$		7	V
$\mathrm{V}_{\text {IN }}$	PECL Input Voltage	GND $=0 \mathrm{~V}$	$\mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	0 to 6	V
$I_{\text {BB }}$	V_{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { SOIC-8 } \\ & \text { SOIC-8 } \end{aligned}$	$\begin{aligned} & 190 \\ & 130 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \text { TSSOP-8 } \\ & \text { TSSOP-8 } \end{aligned}$	$\begin{aligned} & 185 \\ & 140 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free	<2 to 3 sec @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 10ELT SERIES PECL INPUT DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; GND $=0.0 \mathrm{~V}$ (Note 2)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3930		4265	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.2		5.0	2.2		5.0	2.2		5.0	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			255			175			175	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.3			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
2. Output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{Cc}} . \mathrm{V}_{\mathrm{CC}}$ can vary $\pm 0.25 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $G N D, \mathrm{~V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}.

Table 5. 100ELT SERIES PECL INPUT DC CHARACTERISTICS $\mathrm{V}_{C C}=5.0 \mathrm{~V}$; GND $=0.0 \mathrm{~V}$ (Note 4)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.745	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	2.2		5.0	2.2		5.0	2.2		5.0	V
$I_{1 H}$	Input HIGH Current			255			175			175	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. Input parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{CC}}$ can vary $\pm 0.25 \mathrm{~V}$.
5. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $G N D, \mathrm{~V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}.

Table 6. TTL OUTPUT DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Symbol	Characteristic	Condition	Min	Typ	Max	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}$	2.4		$($ Note 6$)$	V
V_{OL}	Output LOW Voltage	$\mathrm{IOL}_{\mathrm{O}}=24 \mathrm{~mA}$			0.5	V
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			20	29	mA
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			22	32	mA
I_{OS}	Output Short Circuit Current		-150		-60	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
6. Maximum level is $V_{C C}-0.7$ by design.

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ; $\mathrm{GND}=0.0 \mathrm{~V}$ (Note 7)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency					100					MHz
$\mathrm{t}_{\text {IITTER }}$	Random Clock Jitter (RMS)					35					ps
tpLH	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
tPHL	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
V_{PP}	Input Swing (Note 8)	200		1000	200		1000	200		1000	mV
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time (10-90\%)					750					ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
7. $R_{L}=500 \Omega$ to GND and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ to GND . Refer to Figure 2.
8. $\mathrm{V}_{\mathrm{PP}}(\mathrm{min})$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40.

Figure 2. TTL Output Loading Used for Device Evaluation

MC10ELT21, MC100ELT21

ORDERING INFORMATION

Device	Package	Shipping †
MC10ELT21DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10ELT21DR2G	SOIC-8 (Pb-Free)	2500 / Tape \& Reel
MC10ELT21DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC10ELT21DTR2G	TSSOP-8 (Pb-Free)	$2500 /$ Tape \& Reel
MC100ELT21DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100ELT21DR2G	SOIC-8 (Pb-Free)	2500 / Tape \& Reel
MC100ELT21DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100ELT21DTR2G	TSSOP-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {mT }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC10ELT21, MC100ELT21

PACKAGE DIMENSIONS

SOIC-8 NB
CASE 751-07
ISSUE AK

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE

MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW 751-01 THRU 751-06
STANDARD IS 751-07.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
\mathbf{H}	0.10	0.25	0.004	0.010		
\mathbf{J}	0.19	0.25	0.007	0.010		
\mathbf{K}	0.40	1.27	0.016	0.050		
\mathbf{M}	$0{ }^{\circ}$	$8{ }^{\circ}$	0	0		
	\circ					
\mathbf{N}	0.25	0.50	0.010	0.020		
\mathbf{S}	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8
DT SUFFIX
CASE 948R-02
ISSUE A

DETAIL E

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		6°	0°		6°

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and the (11) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

