OCTAL D-TYPE LATCH HIGH PERFORMANCE

- 5V TOLERANT INPUTS
- HIGH SPEED: $t_{P D}=6.8 n s$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS:
$\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\mathrm{PHL}}$
- OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65 \mathrm{~V}$ to 3.6 V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 573
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE:

HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LVC573A is a low voltage CMOS OCTAL D-TYPE LATCH fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for 1.65 to $3.6 \mathrm{~V}_{\mathrm{CC}}$ operations and low power and low noise applications.
These 8 bit D-Type latch are controlled by a latch enable input (LE) and an output enable input ($\overline{\mathrm{OE}}$). While the LE inputs is held at a high level, the Q

Table 1: Order Codes

PACKAGE	T \& R
SOP	74LVC573AMTR
TSSOP	74LVC573ATTR

outputs will follow the data input precisely or inversely. When the LE is taken low, the Q outputs will be latched precisely or inversely at the logic level of D input data. While the ($\overline{O E}$) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.
This device is designed to interface directly High Speed CMOS systems with TTL and NMOS components. It has more speed performance at 3.3 V than 5V AC/ACT family, combined with a lower power consumption.
All inputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N ${ }^{\circ}$	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3 State Output Enable Input (Active LOW)
$2,3,4,5,6$, $7,8,9$	D0 to D7	Data Inputs
$12,13,14$, $15,16,17$, 18,19	Q0 to Q7	3-State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (OV)
20	V $_{\text {CC }}$	Positive Supply Voltage

Table 3: Truth Table

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	LE	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L	L	X	NO
L	H	L	L
L	H	H	H

X : Don't Care
Z : High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note 2)	-50	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_{O} absolute maximum rating must be observed
2) $V_{O}<G N D$

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	1.65 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State)	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 3.0 V$)$	± 12	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	± 8	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=1.65\right.$ to 2.3 V$)$	± 4	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 2)	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.2 V to 3.6 V
2) $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Table 6: DC Specifications

Symbol	Parameter	Test Condition		Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		-40 to $85^{\circ} \mathrm{C}$		-55 to $125{ }^{\circ} \mathrm{C}$		
				Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	1.65 to 1.95		$0.65 \mathrm{~V}_{\mathrm{CC}}$		$0.65 \mathrm{~V}_{\text {CC }}$		V
		2.3 to 2.7		1.7		1.7		
		2.7 to 3.6	\cdots	2		2		
VIL	Low Level Input Voltage	1.65 to 1.95)		$0.35 \mathrm{~V}_{\text {CC }}$		$0.35 \mathrm{~V}_{\text {cC }}$	V
		2.3 to 2.7			0.7		0.7	
		2.7 to 3.6			0.8		0.8	
V_{OH}	High Level Output Voltage	1.65 to 3.6	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		1.65	$\mathrm{l}_{\mathrm{O}}=-4 \mathrm{~mA}$	1.2		1.2		
		2.3	$\mathrm{l}_{\mathrm{O}}=-8 \mathrm{~mA}$	1.7		1.7		
		2.7	$\mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		2.2		
		3.0	$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		2.4		
		3.0	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	2.2		2.2		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	1.65 to 3.6	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2		0.2	V
		1.65	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$		0.45		0.45	
		2.3	$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$		0.7		0.7	
		2.7	$\mathrm{l}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4		0.4	
		3.0	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55		0.55	
1	Input Leakage Current	3.6	$\mathrm{V}_{1}=0$ to 5.5 V		± 5		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZ }}$	High Impedance Output Leakage Current	3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 5		± 5	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		10		10	$\mu \mathrm{A}$
			$\begin{gathered} \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=3.6 \text { to } \\ 5.5 \mathrm{~V} \\ \hline \end{gathered}$		± 10		± 10	
$\Delta_{\text {l }}$	$I_{\text {cc }}$ incr. per Input	2.7 to 3.6	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500		500	$\mu \mathrm{A}$

Table 7: Dynamic Switching Characteristics

Symbol	Parameter	Test Condition		$\begin{gathered} \hline \text { Value } \\ \hline T_{A}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$					
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Level Quiet Output (note 1)	3.3	$\begin{gathered} C_{L}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V} \end{gathered}$		0.8		v
VoLv					-0.8		

1) Number of output defined as " n ". Measured with " $n-1$ " outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.
Table 8: AC Electrical Characteristics

Symbol	Parameter	Test Condition				Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}} \\ (\mathrm{pF}) \end{gathered}$	R_{L} (Ω)	$\begin{aligned} & \begin{array}{l} t_{s}=t_{r} \\ \text { (ns) } \end{array} \end{aligned}$	-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time D to Q	1.65 to 1.95	30	1000	2.0		TBD		TBD	ns
		2.3 to 2.7	30	500	2.0		TBD		TBD	
		2.7	50	500	2.5	1.5	7.8	1.5	9.4	
		3.0 to 3.6	50	500	2.5	1	6.8	1	8.2	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time LE to Q	1.65 to 1.95	30	1000	2.0		TBD		TBD	ns
		2.3 to 2.7	30	500	2.0	5	TBD		TBD	
		2.7	50	500	2.5	1.5	7.8	1.5	9.4	
		3.0 to 3.6	50	500	2.5	1	6.8	1	8.2	
$t_{\text {PZL }} \mathrm{t}_{\text {PZH }}$	Output Enable Time	1.65 to 1.95	30	1000	2.0		TBD		TBD	ns
		2.3 to 2.7	30	500	2.0		TBD		TBD	
		2.7	50	500	2.5	1	8.7	1	10.4	
		3.0 to 3.6	50	500	2.5	1	7.7	1	9.2	
$t_{\text {PLZ }} \mathrm{t}_{\text {PHZ }}$	Output Disable Time	1.65 to 1.95	30	1000	2.0		TBD		TBD	ns
		2.3 to 2.7	30	500	2.0		TBD		TBD	
		2.7	50	500	2.5	2	7.6	2	9.1	
		3.0 to 3.6	50	500	2.5	2	7.0	2	8.4	
${ }^{\text {tw }}$	LE Pulse Width HIGH	1.65 to 1.95	30	1000	2.0	TBD		TBD		ns
		2.3 to 2.7	30	500	2.0	TBD		TBD		
		2.7	50	500	2.5	3.3		3.3		
		3.0 to 3.6	50	500	2.5	3.3		3.3		
t_{s}	Setup Time D to LE, (HIGH to LOW)	1.65 to 1.95	30	1000	2.0	TBD		TDB		ns
		2.3 to 2.7	30	500	2.0	TBD		TBD		
		2.7	50	500	2.5	2		2		
		3.0 to 3.6	50	500	2.5	2		2		
$t_{\text {h }}$	Hold Time LE (HIGH to LOW) to D	1.65 to 1.95	30	1000	2.0	TBD		TBD		ns
		2.3 to 2.7	30	500	2.0	TBD		TBD		
		2.7	50	500	2.5	1.5		1.5		
		3.0 to 3.6	50	500	2.5	1.5		1.5		
tosth toshl	Output To Output Skew Time (note1, 2)	2.7 to 3.6					1		1	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|$
2) Parameter guaranteed by design

Table 9: Capacitive Characteristics

Symbol	Parameter	Test Condition		Value			Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4		pF
$\mathrm{CPD}^{\text {P }}$	Power Dissipation Capacitance (note 1)	1.8	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$		28		pF
		2.5			30		
		3.3			34		

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / n$ (per circuit)

Figure 3: Test Circuit

$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Table 10: Test Circuit And Waveform Symbol Value

Symbol	V_{Cc}			
	$\mathbf{1 . 6 5}$ to $\mathbf{1 . 9 5 V}$	$\mathbf{2 . 3}$ to 2.7 V	$\mathbf{2 . 7 V}$	$\mathbf{3 . 0}$ to 3.6 V
C_{L}	30 pF	30 pF	50 pF	50 pF
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}$	1000Ω	500Ω	500Ω	500Ω
$\mathrm{~V}_{\mathrm{S}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$	6 V	7 V
$\mathrm{~V}_{\mathrm{IH}}$	V_{CC}	V_{CC}	2.7 V	3.0 V
$\mathrm{~V}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	1.5 V	1.5 V
$\mathrm{~V}_{\mathrm{OH}}$	V_{CC}	V_{CC}	3.0 V	3.5 V
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}$	$<2.0 \mathrm{~ns}$	$<2.0 \mathrm{~ns}$	$<2.5 \mathrm{~ns}$	$<2.5 \mathrm{~ns}$

Figure 4: Waveform - Propagation Delay, Setup And Hold Times ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 5: Waveform - Output Enable And Disable Times ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 6: Waveform - Propagation Delay Time ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.30	0.004		0.012
B	0.33		0.51	0.013		0.020
C	0.23		0.32	0.009		0.013
D	12.60		13.00	0.496		0.512
E	7.4		7.6	0.291		0.299
e		1.27			0.050	
H	10.00		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
k	0°		8°	$0{ }^{\circ}$		8°
ddd						

TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC		0	0.0256 BSC	
K	0°		8°	0		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

0087225C

Tape \& Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		30.4			
T			11	0.425		0.433
Ao	10.8		13.4	0.520		0.528
Bo	13.2		3.3	0.122		0.130
Ko	3.1		4.1	0.153		0.161
Po	3.9		12.1	0.468		0.476
P	11.9					

Tape \& Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			7	0.268		0.276
Ao	6.8		7.1	0.272		0.280
Bo	6.9		1.9	0.067		0.075
Ko	1.7		4.1	0.153		0.161
Po	3.9		12.1	0.468		0.476
P	11.9					

Table 11: Revision History

Date	Revision	Description of Changes
26-Jul-2004	3	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

