
### **STA8090WG**



# Fully Integrated GPS/Galileo/Glonass/QZSS receiver with embedded RF

Datasheet - preliminary data



#### **Features**

- STMicroelectronics positioning receiver with 48 tracking channels and 2 fast acquisition channels supporting GPS, Galileo, GLONASS, BeiDou and QZSS systems
- Single die standalone receiver embedding RF Front-End and low noise amplifier
- -162 dBm indoor sensitivity (tracking mode)
- Fast TTFF < 1 s in Hot start and 30 s in Cold Start
- High performance ARM946 MCU (up to 196 MHz)
- 256 Kbyte embedded SRAM
- · External SQI Flash interface
- 8 free running timers/ counters (32 bit)
- Real Time Clock (RTC) circuit
- · 32-bit Watch-dog timer
- 3 UARTs
- 1 I<sup>2</sup>C master interface
- 1 Synchronous Serial Port (SSP, Motorola-SPI supported)
- USB2.0 full speed (12 MHz) with integrated physical layer transceiver

- 1 Controller Area Network (CAN) (STA8090WGBD only)
- Power Management Unit (PMU) embedding switching regulator
- Operating condition:
  - Main voltage regulator (V<sub>INL</sub>): 1.6 V to 4.3 V
  - Backup voltage (V<sub>INB</sub>): 1.6 V to 4.3 V
  - Digital voltage (V<sub>DD</sub>): 1.0 V to 1.32 V
  - RF core voltage (V<sub>CC</sub>): 1.2 V ± 10%
  - IO Ring Voltage ( $V_{ddIO}$ ): 1.8 V ± 5% or 3.3 V ± 10%
- Package:
  - WLCSP77 (3.861 x 3.843 x 0.6 mm) 0.4 pitch
- · Packing in Tape and Reel
- Operating temperature range: -40/ +85 °C

### Description

STA8090WG belongs to Teseo III family products.

STA8090WG is a single die standalone positioning receiver which embeds the new ST GNSS positioning engine capable of receiving signals from multiple satellite navigation systems, including GPS, Galileo, Glonass, BeiDou QZSS.

The minimum BOM and small WLCSP package make STA8090WG the ideal solution for low-cost and small footprint products such hand-held computers, cameras, data loggers, and sports accessories.

The device is offered with a complete GNSS firmware which performs all GNSS operations including tracking, acquisition, navigation and data output.

June 2020 DS11052 Rev 5 1/34

Table 1. Device summary

| Root Part Number | Package                  | Packaging     |
|------------------|--------------------------|---------------|
| STA8090WG        | WLCSP77 3.861 x 3.843 mm | Tape and Reel |



STA8090WG Contents

## **Contents**

| 1 | Ove   | erview                                               | 7      |
|---|-------|------------------------------------------------------|--------|
| 2 | Pin ( | description                                          | 8      |
|   | 2.1   | Block diagram                                        | 8      |
|   | 2.2   | WLCSP 77 ball out                                    | 9      |
|   | 2.3   | Power supply pins                                    | 9      |
|   | 2.4   | Main function pins                                   | 10     |
|   | 2.5   | Test / emulated dedicated pins                       |        |
|   | 2.6   | SQI pins                                             |        |
|   | 2.7   | Communication interface pins                         |        |
|   | 2.8   | General purpose pins                                 | 14     |
|   | 2.9   | RF front-end pins                                    |        |
| 3 | Gen   | neral description                                    | 15     |
|   | 3.1   | RF front end                                         | 15     |
|   | 3.2   | GPS/Galileo/GLONASS/BeiDou Base Band (G3BB+) process | sor 15 |
|   | 3.3   | MCU Subsystem                                        | 15     |
|   |       | 3.3.1 AHB slaves                                     | 16     |
|   | 3.4   | APB peripherals                                      | 17     |
|   |       | 3.4.1 EFT                                            | 17     |
|   |       | 3.4.2 SSP                                            | 17     |
|   |       | 3.4.3 UART                                           |        |
|   |       | 3.4.4 I2C                                            |        |
|   |       | 3.4.5 MTU                                            |        |
|   |       | 3.4.6 WDT                                            |        |
|   |       | 3.4.8 RTC                                            |        |
|   |       | 3.4.9 CAN (only in STA8090WGBD)                      |        |
| 4 | Elec  | ctrical characteristics                              | 21     |
|   | 4.1   | Parameter conditions                                 | 21     |
|   | 4.2   | Minimum and maximum values                           |        |
|   | 4.3   | Typical values                                       | 21     |
|   |       | DS11052 Rev 5                                        | 3/34   |

|   | 4.4   | Typical  | curves                                                    | 21   |
|---|-------|----------|-----------------------------------------------------------|------|
|   | 4.5   | Absolute | e maximum ratings                                         | 21   |
|   | 4.6   | Recomr   | nended DC operating conditions                            | 23   |
|   | 4.7   | DC cha   | racteristics                                              | 24   |
|   | 4.8   | AC chai  | racteristics                                              | 26   |
|   |       | 4.8.1    | RF electrical specifications                              | . 26 |
|   |       | 4.8.2    | Oscillator electrical specifications                      | . 27 |
|   |       | 4.8.3    | OSCI oscillator specifications                            | . 29 |
| 5 | Packa | age info | rmation                                                   | 30   |
|   | 5.1   | WLCSP    | 77 (3.861 x 3.843 x 0.6 mm) 0.4 pitch package information | 30   |
| 6 | Order | ing info | ormation                                                  | 32   |
| 7 | Revis | ion hist | ory                                                       | 33   |
|   |       |          |                                                           |      |



STA8090WG List of tables

## List of tables

| Table 1.  | Device summary                               | . 2 |
|-----------|----------------------------------------------|-----|
| Table 2.  | Power supply pins                            |     |
| Table 3.  | Main function pins                           | 10  |
| Table 4.  | Test/emulated dedicated pins                 | 11  |
| Table 5.  | SQI pins                                     | 11  |
| Table 6.  | Communication interface pins                 | 12  |
| Table 7.  | General purpose pins                         | 14  |
| Table 8.  | RF front-end pins                            | 14  |
| Table 9.  | TCM Configuration                            | 16  |
| Table 10. | Voltage characteristics                      | 21  |
| Table 11. | Thermal characteristics                      | 22  |
| Table 12. | Frequency limits                             | 22  |
| Table 13. | Power consumption                            | 22  |
| Table 14. | Recommended DC operating conditions          | 23  |
| Table 15. | SMPS DC characteristics                      | 24  |
| Table 16. | LDO1 DC characteristics                      | 24  |
| Table 17. | LDO2 DC characteristics                      | 24  |
| Table 18. | Low voltage detection thresholds             | 24  |
| Table 19. | I/O buffers DC characteristics               | 25  |
| Table 20. | 1.0 V I/O buffers DC characteristics         |     |
| Table 21. | RFCHAIN – GALGPS filter and VGA              | 26  |
| Table 22. | RFCHAIN – GLONASS/BeiDou filter and VGA      | 26  |
| Table 23. | Synthesizer                                  | 27  |
| Table 24. | Crystal recommended specifications           | 27  |
| Table 25. | Oscillator amplifier specifications          | 28  |
| Table 26. | Characteristics of external slow clock input | 28  |
| Table 27. | WLCSP77 package mechanical data              | 30  |
| Table 28. | Document revision history                    | 33  |



DS11052 Rev 5 5/34

List of figures STA8090WG

## List of figures

| Figure 1. | STA8090WG system block diagram          | . 8 |
|-----------|-----------------------------------------|-----|
| Figure 2. | WLCSP 77 ball out diagram (bottom view) | . 9 |
| Figure 3. | 32.768 kHz crystal connection           | 28  |
| Figure 4. | WLCSP77 package outline                 | 30  |
| Figure 5. | Ordering information scheme             | 32  |



STA8090WG Overview

### 1 Overview

STA8090WG is one of the part number of Teseo III STA8090x series.

STA8090WG is a highly integrated System-On-Chip GNSS receiver designed for high-flexible and cost effective solution addressing hand-held, in-dash navigation and Telematics applications.

STA8090WG embeds the new ST GNSS positioning engine capable of receiving signals from multiple satellite navigation systems, including the US GPS, European Galileo, Russia's GLONASS, Chinese BeiDou and Japan's QZSS.

The STA8090WG ability of tracking simultaneously the signals from multiple satellites regardless of their constellation, make this chip capable of delivering exceptional accuracy in urban canyons and in the environments where buildings and other obstructions make satellite visibility challenging.

STA8090WG embeds innovative power management unit with switching regulator for power consumption optimization.

The extended voltage supply range from 1.6 V to 4.3 V, the 1.8 V and 3.3 V I/O compliance support make the STA8090WG the suitable solution for different user applications.

The STA8090WG combines a high performance ARM946 microprocessor with I/O capabilities and enhanced peripherals.

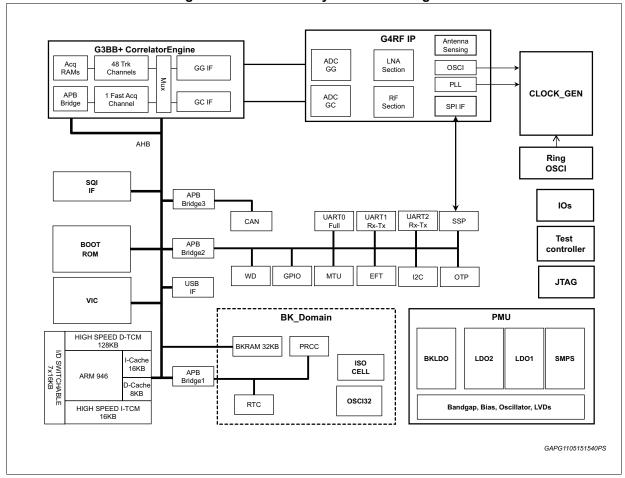
It supports USB2.0 standard at full speed (12 Mbps) with on-chip PHY.

The chip embeds backup logic with real time clock.

STA8090WGBD can be offered also bundled with STMicroelectronics dead reckoning firmware called TESEO-DRAW; TESEO-DRAW firmware is a multi-sensors data fusion hub for Teseo family IC's.

The STA8090WG, using STMicroelectronics CMOSRF Technology, is housed in a WLCSP77 (3.861 x 3.843 x 0.6 mm) 0.4 pitch with a Tape and Reel packing.




DS11052 Rev 5 7/34

Pin description STA8090WG

## 2 Pin description

## 2.1 Block diagram

Figure 1. STA8090WG system block diagram



STA8090WG Pin description

## 2.2 WLCSP 77 ball out

Figure 2. WLCSP 77 ball out diagram (bottom view)

| _ | 9        | 8             | 7           | 6           | 5           | 4           | 3           | 2         | 1           |
|---|----------|---------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|
| Α | I2C_SD   | TDO           | USB_DM      | VOM         | VDD_ANA     | GND_ANA     | VLX         | GND_POWER | VINM        |
| В | VDDIO_r2 | I2C_SD        | TDI         | SPI_CLK     | SPI_DI      | SPI_DO      | GND_ANA     | VINM      | SPI_CSN     |
| С | I2C_CLK  | тск           | GND_IO+GNDD | USB_DP      | GND_IO+GNDD | UART0_TX    | UART2_TX    | UART0_RX  | VDDIO_r1    |
| D | Tsense   | TRSTn         | TMS         | GND_IO+GNDD | GND_IO+GNDD | VDDD        | UART2_RX    | GPIO_0    | GPIO_1      |
| E | VCC_LNA  | TP_IF_P       | TP_IF_N     | ANT_SENSE2  | GND_IO+GNDD | GND_IO+GNDD | SQI_SIO0/SI | SQI_SIO3  | SQI_CLK     |
| F | GND_LNA  | GND_LNA       | VCC_RFA     | ANT_SENSE1  | GND_RF      | WAKEUP      | SQI_Cen     | SQI_SIO2  | SQI_SIO1/SO |
| G |          | LNA_IN        | GND_LNA     | VINL2       | GND_RF      | RSTn        | GND_HM2     | VINL1     | HV          |
| н |          | GND_RF        | V0L2        | GND_RF      | XTAL_OUT    | STDBY_Out   | RTC_XTI     | VINB      | VOL1        |
| J | GND_RF   | VCC_CHAIN_PLL |             |             | XTAL_IN     | STDBYn      | VOB         | RTC_XTO   | VINB        |
|   | 9        | 8             | 7           | 6           | 5           | 4           | 3           | 2         | 1           |

## 2.3 Power supply pins

Table 2. Power supply pins

| Name          | I/O voltage | I/O | Description                                        | Pin# |
|---------------|-------------|-----|----------------------------------------------------|------|
| VCC_CHAIN_PLL | 1.2 V       | PWR | Analog supply voltage for RF chain and PLL (1.2 V) | J8   |
| VCC_RFA       | 1.2 V       | PWR | Analog supply voltage for RF (1.2 V)               | F7   |
| VCC_LNA       | 1.2 V       | PWR | Analog supply voltage for LNA (1.2 V)              | E9   |

Pin description STA8090WG

Table 2. Power supply pins (continued)

| Name        | I/O voltage    | I/O | Description                                           | Pin#                      |
|-------------|----------------|-----|-------------------------------------------------------|---------------------------|
| VDDD        | 1.2 V          | PWR | Digital supply voltage                                | D4                        |
| VDDIO_r1    | 1.8 V or 3.3 V | PWR | Digital supply voltage for I/O ring 1 (1.8 V or 3.3V) | C1                        |
| VDDIO_r2    | 3.3 V          | PWR | Digital supply voltage for I/O ring 2 (3.3 V)         | В9                        |
| VINB        | 1.6 V - 4.3 V  | PWR | Backup LDO input supply voltage (1.6 V to 4.3 V)      | H2, J1                    |
| VINL1       | 1.6 V - 4.3 V  | PWR | LDO1 input supply voltage (1.6 V to 4.3 V)            | G2                        |
| VINL2       | 1.6 V - 4.3 V  | PWR | LDO2 input supply voltage (1.6 V to 4.3 V)            | G6                        |
| VINM        | 1.6 V - 4.3 V  | PWR | SMPS coil input supply (1.6 V to 4.3 V)               | A1, B2                    |
| VDD_ANA     | 1.6 V - 4.3 V  | PWR | SMPS input supply (1.6 V to 4.3 V)                    | A5                        |
| VLX         | 0 V - 4.3 V    | PWR | SMPS coil output                                      | A3                        |
| VOB         | 1.0 V          | PWR | LDO backup output voltage (1.0 V)                     | J3                        |
| VOL1        | 1.2 V or 1.8 V | PWR | LDO1 output voltage (1.8 V)                           | H1                        |
| VOL2        | 1.2 V          | PWR | LDO2 output voltage (1.2 V)                           | H7                        |
| VOM         | 1.2 V or 1.8 V | PWR | SMPS output voltage (1.2 V)                           | A6                        |
| GND_RF      | GND            | GND | Ground                                                | F5, G5, H8, H6,<br>J9     |
| GND_LNA     | GND            | GND | Ground                                                | F9, F8, G7                |
| GND_IO+GNDD | GND            | GND | Ground                                                | C5, C7, D5, D6,<br>E4, E5 |
| GND_ANA     | GND            | GND | Ground                                                | A4, B3                    |
| GND_POWER   | GND            | GND | Ground                                                | A2                        |
| GND_HM2     | GND            | GND | Ground                                                | G3                        |

## 2.4 Main function pins

**Table 3. Main function pins** 

| Name      | I/O voltage | I/O | Description                                                                                                        | Pin# |
|-----------|-------------|-----|--------------------------------------------------------------------------------------------------------------------|------|
| RSTn      | 1.0 V       | I   | Reset Input with Schmitt-Trigger characteristics and noise filter.                                                 | G4   |
| RTC_XTI   | 1.0 V (max) | I   | Input of the 32 KHz oscillator amplifier circuit and input of the internal real time clock circuit.                | НЗ   |
| RTC_XTO   | 1.0 V (max) | 0   | Output of the oscillator amplifier circuit.                                                                        | J2   |
| STDBY_OUT | 1.0 V       | 0   | When low, indicates the chip is in Standby mode                                                                    | H4   |
| STDBYn    | 1.0 V       | ı   | When low, the chip is forced in Standby Mode - All pins in high impedance except the ones powered by Backup supply | J4   |
| WAKEUP    | 1.0 V       | I   | WAKEUP from STANDBY mode                                                                                           | F4   |



STA8090WG Pin description

## 2.5 Test / emulated dedicated pins

Table 4. Test/emulated dedicated pins

| Name    | I/O voltage | I/O | Description                   | Pin# |
|---------|-------------|-----|-------------------------------|------|
| TCK     | VDDIO_R2    | I   | JTAG Test Clock               | C8   |
| TDI     | VDDIO_R2    | I   | JTAG Test Data In             | В7   |
| TDO     | VDDIO_R2    | 0   | JTAG Test Data Out            | A8   |
| TMS     | VDDIO_R2    | I   | JTAG Test Mode Select         | D7   |
| TRSTn   | VDDIO_R2    | I   | JTAG Test Circuit Reset       | D8   |
| TP_IF_N | 1.2 V       | 0   | Diff.Test Point for IF — Neg. | E7   |
| TP_IF_P | 1.2 V       | 0   | Diff.Test Point for IF — Pos. | E8   |

## 2.6 SQI pins

Table 5. SQI pins

| Name        | I/O voltage | I/O | Description                                   | Pin# |
|-------------|-------------|-----|-----------------------------------------------|------|
| SQI_Cen     | VDD_SQI     | 0   | SQI Flash chip enable / IO_Power Sel Ring SQI | F3   |
| SQI_CLK     | VDD_SQI     | 0   | SQI Flash clock                               | E1   |
| SQI_SIO0/SI | VDD_SQI     | I/O | SQI Flash data IO 0 / ser. I                  | E3   |
| SQI_SIO1/SO | VDD_SQI     | I/O | SQI Flash data IO 1 / ser. O                  | F1   |
| SQI_SIO2    | VDD_SQI     | I/O | SQI Flash data IO 2                           | F2   |
| SQI_SIO3    | VDD_SQI     | I/O | SQI Flash data IO 3                           | E2   |

Pin description STA8090WG

## 2.7 Communication interface pins

Table 6. Communication interface pins

| Name    | I/O voltage | I/O      | Alternative function | Function               | Description                                      | Pin<br>#              |            |          |   |     |         |                 |      |
|---------|-------------|----------|----------------------|------------------------|--------------------------------------------------|-----------------------|------------|----------|---|-----|---------|-----------------|------|
|         |             | 0        | AF0 (default)        | I2C_CLK                | I2C clock                                        |                       |            |          |   |     |         |                 |      |
| ISC CLK | VDDIO R2    | I/O      | AF1                  | GPIO8                  | General purpose I/O #8                           | C9                    |            |          |   |     |         |                 |      |
| I2C_CLK | VDDIO_R2    | 0        | AF2                  | CAN1_TX <sup>(1)</sup> | CAN1 transmit data output                        | Ca                    |            |          |   |     |         |                 |      |
|         |             | 0        | AF3                  | SPI_CLK                | SPI clock                                        |                       |            |          |   |     |         |                 |      |
|         |             | I/O      | AF0 (default)        | MMC_D0                 | Multimedia card data 0                           |                       |            |          |   |     |         |                 |      |
| I2C_SD  | VDDIO B3    | I/O      | AF1                  | i2s_out_sclk           | MSP serial clock output                          | A9,                   |            |          |   |     |         |                 |      |
|         | VDDIO_R2    | I        | AF2                  | I2C_SD                 | I2C serial data                                  | B8                    |            |          |   |     |         |                 |      |
|         |             | I/O      | AF3                  | GPIO20                 | General purpose I/O #20                          |                       |            |          |   |     |         |                 |      |
|         |             | 0        | AF0 (default)        | SPI_CLK                | SPI clock                                        |                       |            |          |   |     |         |                 |      |
| SPI_CLK | VDDIO B1    | I/O      | AF1                  | GPIO25                 | General purpose I/O #25                          | De l                  |            |          |   |     |         |                 |      |
|         | VDDIO_R1    | יסוטט_אן | VDDIO_R1             | VDDIO_R1               | VDDIO_R1                                         | K VDDIO_RT            | K VDDIO_RT | VDDIO_R1 | 0 | AF2 | SQI_CLK | SQI Flash clock | - B6 |
|         |             | 0        | AF3                  | MMC_CLK                | Multimedia Clock line                            |                       |            |          |   |     |         |                 |      |
|         | VDDIO_R1    | 0        | AF0 (default)        | SPI_CSN                | SPI chip select active low / IO_Power Sel Ring 1 |                       |            |          |   |     |         |                 |      |
| SPI_CSN |             | I/O      | AF1                  | GPIO24                 | General purpose I/O #24                          | B1                    |            |          |   |     |         |                 |      |
| _       |             |          | I/O                  | AF2                    | SQI_CEN                                          | SQI Flash chip enable |            |          |   |     |         |                 |      |
|         |             | I/O      | AF3                  | MMC_CMD                | Multimedia card command line                     |                       |            |          |   |     |         |                 |      |
|         |             | I        | AF0 (default)        | SPI_DI                 | SPI serial data input / BOOT2                    |                       |            |          |   |     |         |                 |      |
| CDL DI  | VDDIO D4    | I/O      | AF1                  | Tsense                 | External temperature capture port                | ]<br>  DE             |            |          |   |     |         |                 |      |
| SPI_DI  | VDDIO_R1    | I/O      | AF2                  | SQI_SIO1/SO            | SQI Flash data IO 1 / ser. 0                     | - B5                  |            |          |   |     |         |                 |      |
|         |             | I/O      | AF3                  | MMC_D0                 | Multimedia card data 0                           |                       |            |          |   |     |         |                 |      |
|         |             | 0        | AF0 (default)        | SPI_DO                 | SPI serial data output                           |                       |            |          |   |     |         |                 |      |
| CDL DO  | VDDIO D4    | I/O      | AF1                  | GPIO27                 | General purpose I/O #27                          | ] [                   |            |          |   |     |         |                 |      |
| SPI_DO  | VDDIO_R1    | I/O      | AF2                  | SQI_SIO0/SI            | SQI Flash data IO 0 / ser. 1                     | - B4                  |            |          |   |     |         |                 |      |
|         |             | I/O      | AF3                  | MMC_D1                 | Multimedia card data 1                           |                       |            |          |   |     |         |                 |      |
|         |             | I        | AF0 (default)        | Reserved               | Reserved                                         |                       |            |          |   |     |         |                 |      |
| Toonso  | VDDIO B3    | I        | AF1                  | Reserved               | Reserved                                         | D9                    |            |          |   |     |         |                 |      |
| Tsense  | VDDIO_R2    | I        | AF2                  | Reserved               | Reserved                                         | 1 09                  |            |          |   |     |         |                 |      |
| İ       |             | I        | AF3                  | Tsense                 | External temperature capture port                | ]                     |            |          |   |     |         |                 |      |

12/34 DS11052 Rev 5

Downloaded from Arrow.com.

STA8090WG Pin description

Table 6. Communication interface pins (continued)

| Name      | I/O voltage | I/O      | Alternative function | Function               | Description                                   | Pin<br># |                 |
|-----------|-------------|----------|----------------------|------------------------|-----------------------------------------------|----------|-----------------|
|           |             | I        | AF0 (default)        | UART0_RX               | UART0 Rx data                                 |          |                 |
|           |             | 0        | AF1                  | SPI_DO                 | SPI serial data output                        |          |                 |
| UART0_RX  | VDDIO_R1    | I/O      | AF2                  | SQI_SIO2               | SQI Flash data IO 2                           | C2       |                 |
|           |             | I        | AF3                  | Timer_ICAPA            | Extended Function Timer - Input Capture A     |          |                 |
|           |             | 0        | AF0 (default)        | UART0_TX               | UART0 Tx data / BOOT1                         |          |                 |
|           |             | I        | AF1                  | SPI_DI                 | SPI serial data input                         |          |                 |
| UART0_TX  | VDDIO_R1    | I/O      | AF2                  | SQI_SIO3               | SQI Flash data IO 3                           | C4       |                 |
|           |             | 0        | AF3                  | Timer_OCMPA            | Extended Function Timer – Output<br>Compare A |          |                 |
|           |             | I        | AF0 (default)        | UART2_RX               | UART 2 Rx data                                |          |                 |
| LIADTA DV | VDDIO_R1    | I/O      | AF1                  | GPIO28                 | General purpose I/O #28                       |          |                 |
| UART2_RX  |             | VDDIO_KT | VDDIO_K1             | I/O                    | AF2                                           | I2C_SD   | I2C serial data |
|           |             | I/O      | AF3                  | Reserved               | Reserved                                      |          |                 |
|           |             | 0        | AF0 (default)        | UART2_TX               | UART 2 Tx data / BOOT0                        |          |                 |
| UART2 TX  | VDDIO_R1    | I/O      | AF1                  | GPIO29                 | General purpose I/O #29                       | C3       |                 |
| UARIZ_IX  | VDDIO_K1    | 0        | AF2                  | I2C_CLK                | I2C clock                                     | Co       |                 |
|           |             | I/O      | AF3                  | Reserved               | Reserved                                      |          |                 |
|           |             | USB      | AF0                  | USB_DM                 | USB D- signal                                 |          |                 |
| LICE DM   | VDDIO R2    | I        | AF1 (default)        | UART1_RX               | UART1 Rx data                                 | A7       |                 |
| USB_DM    | VDDIO_R2    | I        | AF2                  | CAN1_RX <sup>(1)</sup> | CAN1 receive data input                       | A/       |                 |
|           |             | I/O      | AF3                  | I2C_SD                 | I2C serial data                               |          |                 |
|           |             | USB      | AF0                  | USB_DP                 | USB D+ signal                                 |          |                 |
| HED UD    | VDDIO_R2    | 0        | AF1 (default)        | UART1_TX               | UART1 Tx data                                 | C6       |                 |
| USB_DP    | \ \DDIO_K2  | 0        | AF2                  | CAN1_TX <sup>(1)</sup> | CAN1 transmit data output                     |          |                 |
|           |             | 0        | AF3                  | I2C_CLK                | I2C clock                                     |          |                 |

<sup>1.</sup> Only for STA8090WGBD.

Pin description STA8090WG

## 2.8 General purpose pins

Table 7. General purpose pins

| Name  | I/O voltage                                                    | I/O                                           | Alternative function | Function | Description                                      |    |
|-------|----------------------------------------------------------------|-----------------------------------------------|----------------------|----------|--------------------------------------------------|----|
|       |                                                                | I/O                                           | AF0 (default)        | GPIO0    | General purpose I/O #0                           |    |
|       |                                                                | 1                                             | AF1                  | PPS_IN   | Pulse per second input                           |    |
| GPIO0 | O0 VDDIO_R1 O AF2 Timer_OCMPB Extended Function Till Compare B | Extended Function Timer – Output<br>Compare B | D2                   |          |                                                  |    |
|       |                                                                | 0                                             | AF3                  | Mag_0 GC | GLONASS and BeiDou 3-bit coding<br>Output (MAG0) |    |
|       |                                                                | I/O                                           | AF0 (default)        | GPIO1    | General purpose I/O #1 / BOOT3                   |    |
| GPIO1 | VDDIO R1                                                       | I                                             | AF1                  | Reserved | Reserved                                         | D1 |
| GFIUT | VDDIO_ICI                                                      | 0                                             | AF2                  | PPS_OUT  | Pulse per second output                          | וט |
|       |                                                                | I/O                                           | AF3                  | Tsense   | External temperature capture port                |    |

## 2.9 RF front-end pins

Table 8. RF front-end pins

| Name     | I/O voltage | I/O | Description                                    | Pin# |
|----------|-------------|-----|------------------------------------------------|------|
| LNA_IN   | 1.2 V       | I   | Low Noise Amplifier Input                      | G8   |
| XTAL_IN  | 1.2 V       | I   | Input Side of Crystal Oscillator or TCXO Input | J5   |
| XTAL_OUT | 1.2 V       | 0   | Output Side of Crystal Oscillator              | H5   |

STA8090WG General description

## 3 General description

#### 3.1 RF front end

The RF front-end is able to down-convert both the GPS-Galileo signal from 1575.42 MHz to 4.092 MHz (4 Fo, being F0 = 1.023 MHz), the GLONASS signal from 1601.718 MHz to 8.57 MHz and the BeiDou signal from 1561.098 MHz to 10.23 MHz.

It embeds high performance LNA minimizing external component count and a LDO to supply the internal core facilitating requirements for external power supply. A three bits ADC converts the IF signals to sign (SIGN) and magnitude (MAG0 and MAG1). They can be sampled or not by SPI. The magnitude bits are internally integrated in order to control the variable gain amplifiers. The VGA gain can be also set by the SPI interface.

The RF tuner accepts a wide range of reference clocks (10 to 52 MHz) and can generate 64 Fo sampling clock for the baseband and 192 Fo clock for MCU subsystem.

# 3.2 GPS/Galileo/GLONASS/BeiDou Base Band (G3BB+) processor

STA8090WG integrates G3BB+ proprietary IP, which is the ST last generation high-sensitivity Baseband processor fully compliant with GPS, Galileo, GLONASS and BeiDou systems.

The baseband receives, from the embedded RF Front-End, two separate IF signals coded in sign-magnitude digital format on 3 bits and the related clocks. The Galileo/GPS (GALGPS) and GLONASS/BeiDou (GNSCOM) signals at the base band inputs are centered on 4.092 MHz, 8.57 MHz and 10.23 MHz.

The baseband processes the two IF signals performing data codification, sample rate conversion and final frequency conversion to zero IF before acquisition and tracking correlations.

The baseband processor has the capability of acquiring and tracking the Galileo, GPS, GLONASS and BeiDou signals in a simultaneous or single way, or a combination of three, being GLONASS and BeiDou mutually exclusive. The number of tracking channels to be used is programmable; the not used tracking channels can be powered down.

A complete multi-OS software library is provided by ST to handle GPS processing, managing satellite acquisition, tracking, pseudo-range calculation and positioning, generating the output in the standard NMEA message format or in a ST binary format. The library includes support of ST self-trained assisted GPS (ST-AGPS), a complete and scalable solution for assisting GPS start-up with autonomous and server-based ephemeris prediction and extension.

## 3.3 MCU Subsystem

The implemented sub-system includes an AHB Lite bus matrix.

An ARM946 core is embedded in the sub-system and masters the AHB bus. The totally available TCM SRAM is 256 KB. The amount of memory on ITCM and DTCM can be

47/

DS11052 Rev 5 15/34

General description STA8090WG

configured by the ARM946 (see *Table 9: TCM Configuration*). ITCM can be configured as Ni x 16 KB; DTCM can be configured as 128 + Nd x 16 KB, where Ni + Nd = 8, Ni  $\geq$  1.

**DTCM** TCMcfg [2] TCMcfq [1] TCMcfg [0] **ITCM** 0 0 0 16 KB 240 KB 0 0 32 KB 224 KB 1 0 1 0 48 KB 208 KB 0 1 64 KB 192 KB 1 1 0 0 80 KB 176 KB 1 0 1 96 KB 160 KB 1 1 0 112 KB 144 KB 1 1 128 KB 1 128 KB

**Table 9. TCM Configuration** 

#### 3.3.1 AHB slaves

- G3 APB port that allows to interface with the G3BB acquisition memory and control registers
- 512 Kbytes ROM
- Vectored Interrupt Controller (VIC)
- SQI flash memory controller
- 3 x ARM946 APB peripheral bus (APB1, APB2, APB3)

#### **Vectored Interrupt Controller (VIC)**

This Vectored Interrupt Controller (VIC) allows the operative system interrupt handler to quickly dispatch interrupt service routines in response to peripheral interrupts. It provides a software interface to the interrupt system. There are up to 64 interrupt lines. The VIC uses a bit position for each different interrupt source.

The software can control each request line to generate software interrupts. Each interrupt line can be independently enabled and configured to trigger a non-vectored Normal Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) to the ARM946 CPU. Sixteen interrupt lines can also be selected to trigger a vectored IRQ.

The VIC has two operation modes: the user mode and the privilege mode, in order to have the possibility to set (or not) one level of protection during execution.

#### FS USB device controller

Full speed USB device with transceiver. It is an AHB slave. When active requires a 48 MHz clock XTAL IN.

#### **SQI Flash interface**

STA8090WG includes a high-performance interface to Serial Quad Interface (SQI) NOR Flash chips, to support a low-cost simple implementation.

16/34 DS11052 Rev 5

Downloaded from Arrow.com.

STA8090WG General description

### 3.4 APB peripherals

#### 3.4.1 EFT

The Extended Function Timer (EFT) consists of a 16-bit counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture), generation of up to two output waveforms (output compare) and one PWM generation. Pulse lengths and waveform periods can be modulated from a very wide range using the timer prescaler.

#### **EFT features**

- Programmable prescaler: f<sub>APB</sub> divided from 1 to 256, prescaler register (0 to 255)
   value +1.
- Overflow status flag and maskable interrupts.
- Output compare functions with:
  - 2 dedicated 16-bit registers
  - 2 dedicated programmable signals
  - 2 dedicated status flags
  - 2 dedicated interrupt flags
- Input capture functions with:
  - 2 dedicated 16-bit registers
  - 2 dedicated active edge selection signals
  - 2 dedicated status flags
  - 2 dedicated interrupt flags
- Pulse Width Modulation mode (PWM).
- One Pulse Mode (OPM).
- PWM input mode.
- Timer global interrupt (5 internally ORed)
  - ICIA: timer input capture A interrupt
  - ICIB: timer input capture B interrupt
  - OCIA: timer output compare A interrupt
  - OCIB: timer output compare B interrupt
  - TOI: timer overflow interrupt

#### 3.4.2 SSP

The SSP is a master interface for synchronous serial communication with peripheral devices that have Motorola SPI.

The SSP performs serial-to-parallel conversion on data received from a peripheral device on SPI\_DI pin, and parallel-to-serial conversion on data written by CPU for transmission on SPI\_DO pin. The transmit and receive paths are buffered with internal FIFO memories allowing up to 32 x 32-bit values to be stored independently in both transmit and receive modes. FIFOs may be burst-loaded or emptied by the system processor or DMA, from one to eight words per transfer. Each 32-bit word from the system fills one entry in FIFO.



DS11052 Rev 5 17/34

General description **STA8090WG** 

> The SSP includes a programmable bit rate clock divider and prescaler to generate the serial output clock SSPCLK from the on-chip clock. One combined interrupt is delivered, which is asserted from several internal maskable events.

#### SSP features

The SSP has the following features:

- Parallel-to-serial conversion on data written to an internal 32-bit wide, 32-location deep
- transmit FIFO
- Serial-to-parallel conversion on received data, buffering it in a 32-bit wide, 32-location
- deep receive FIFO
- Programmable data frame size from 4 to 32 bits
- Programmable clock bit rate and prescaler
- Programmable clock phase and polarity in SPI mode

#### 3.4.3 **UART**

The UARTx (x = 0|1|2) performs serial-to-parallel conversion on data asynchronously received from a peripheral device on UARTx RX pin, and parallel-to-serial conversion on data written by CPU for transmission on UARTx\_TX pin. The transmit and receive paths are buffered with internal FIFO memories allowing up to 64 data byte for transmission, and 64 data byte with 4-bit status (break, frame, parity, and overrun) for receive.

#### **UART** features

The UARTx (x = 0|1|2) are Universal Asynchronous Receiver/Transmitter that support much of the functionality of the industry-standard 16C650 UART. The main features are:

- Programmable baud rates up to UARTCLK / 16 (1.5 Mbps with UARTCLK at 24 MHz), or up to UARTCLK / 8 (3.0 Mbps with UARTCLK at 24 MHz), with fractional baud-rate generator
- 5, 6, 7 or 8 bits of data
- Even, odd, stick or no-parity bit generation and detection
- 1 or 2 stop bit generation
- Support of software flow control using programmable Xon/Xoff characters
- False start bit detection
- Line break generation and detection
- Separate 8-bit wide, 64-deep transmit FIFO and 12-bit wide, 64-deep receive FIFO
- Programmable FIFO disabling for 1-byte depth data path

These UARTs vary from industry-standard 16C650 on some minor points which are:

- Receive FIFO trigger levels
- The internal register map address space, and the bit function of each register differ
- The deltas of the modem status signals are not available
- 1.5 stop bits is not supported
- Independent receive clock feature is not supported

#### 3.4.4 I<sub>2</sub>C

STA8090WG includes an I2C interface configurable as master or slave.

STA8090WG General description

#### 3.4.5 MTU

The 2 Multi Timer Units provide access to eight interrupt generating programmable 32-bit Free-Running decrementing Counters (FRCs). The FRCs have their own clock input, allowing the counters to run from a much slower clock than the system clock.

The FRC is the part of the timer that performs the counting. There are four instantiations of the FRC block in each MTU, allowing eight counts to be performed in parallel. The 32-bit counter in the FRC is split up into two 16-bit counters.

#### 3.4.6 WDT

Watchdog Timer (WDT) provides a way of recovering from software crashes. The watchdog clock is used to generate a regular interrupt (WDOGINT), depending on a programmed value.

The watchdog monitors the interrupt and asserts a reset signal (WDOGRES) if the interrupt remains unserviced for the entire programmed period. You can enable or disable the watchdog unit as required.

Note: Watchdog is stalled when the ARM processor is in Debug mode.

#### 3.4.7 GPIO

The GPIO block provides Twelve (12) programmable inputs or outputs. Each input or output can be controlled in two modes:

- software mode through an APB bus interface
- alternate mode, where GPIO becomes a peripheral input or output line

Any GPIO input can be independently enabled or disabled (masked) for interrupt generation. User can select for each GPIO which edge (rising, falling, both) will trigger an interrupt.

#### 3.4.8 RTC

This is an always-on power domain dedicated to RTC logic (backup system) with 32 Kbyte SRAM and supplied with a dedicated voltage regulator.

The RTC provides a high resolution clock which can be used for GPS. It keeps the time when the system is inactive and can be used to wake the system up when a programmed alarm time is reached. It has a clock trimming feature to compensate for the accuracy of the 32.768 kHz crystal and a secured time update.

#### **RTC features**

- 47-bit counter clocked by 32.768 kHz clock
- 32-bit for the integer part (seconds) and 15-bit for the fractional part
- The integer part and the fractional part are readable independently
- The counter, once enabled, can be stopped
- Integer part load register (32-bit)
- Fractional part load register (15-bit)
- Load bit to transfer the content of the entire load register (integer+fractional part) to the 47-bit counter. Once set by the MCU this bits is cleared by the hardware to signal to the MCU that the RTC has been updated.



General description STA8090WG

#### 3.4.9 **CAN (only in STA8090WGBD)**

The CAN core performs communication according to the CAN protocol version 2.0 part A and B. The bit rate can be programmed to values up to 1 MBit/s. For the connection to the physical layer, additional transceiver hardware is required.

CAN consists of the CAN core, message RAM, message handler, control registers and module. For communication on a CAN network, individual message objects are configured. The message objects and identifier masks for acceptance filtering of received messages are stored in the message RAM. All functions concerning the handling of messages are implemented in the message handler. These functions include acceptance filtering, the transfer of messages between the CAN core and the message RAM, and the handling of transmission requests as well as the generation of the module interrupt.

The register set of the CAN can be accessed directly by the CPU through the module interface. These registers are used to control/configure the CAN core and the message handler and to access the message RAM.

#### **CAN features**

- Supports CAN protocol version 2.0 part A and B
- 32 messages objects
- Each message object has its own identifier mask
- Maskable interrupt
- Disabled automatic re-transmission mode for time triggered CAN applications
- Programmable loop-back mode for self-test operation.



### 4 Electrical characteristics

#### 4.1 Parameter conditions

Unless otherwise specified, all voltages are referred to GND.

#### 4.2 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25$ °C.

### 4.3 Typical values

Unless otherwise specified, typical data are based on  $T_A = 25$ °C,  $V_{ddio} = 1.8$  V,  $V_{dd} = 1.20$  V. They are given only as design guidelines and are not tested.

### 4.4 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 4.5 Absolute maximum ratings

This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages.

Table 10 lists the absolute maximum rating for STA8090WG.

Table 10. Voltage characteristics

| Symbol                | Parameter                                              | Min. | Max. | Unit |
|-----------------------|--------------------------------------------------------|------|------|------|
| V <sub>CC_CHAIN</sub> | Analog supply voltage for RF chain (1.2 V)             | -0.3 | 1.32 | V    |
| V <sub>CC_PLL</sub>   | Analog supply voltage for PLL RF (1.2 V)               | -0.3 | 1.32 | V    |
| V <sub>CC_RF</sub>    | Analog supply voltage for RF (1.2 V)                   | -0.3 | 1.32 | V    |
| V <sub>DD_SQI</sub>   | Digital supply voltage for SQI                         |      | 3.63 | V    |
| $V_{DDD}$             | Power supply pins for the core logic.                  |      | 1.32 | V    |
| V <sub>DDIO_R1</sub>  | Digital supply voltage for I/O ring 1 (1.8 V or 3.3 V) | -0.3 | 3.63 | V    |
| V <sub>DDIO_R2</sub>  | Digital supply voltage for I/O ring 2 (3.3 V)          | -0.3 | 3.63 | V    |
| V <sub>INB</sub>      | Backup LDO input supply voltage (1.6 V to 4.3 V)       | -0.3 | 4.8  | V    |
| V <sub>INL1</sub>     | LDO1 input supply voltage (1.6 V to 4.3 V)             | -0.3 | 4.8  | V    |
| V <sub>INL2</sub>     | LDO2 input supply voltage (1.6 V to 4.3 V)             | -0.3 | 4.8  | V    |



DS11052 Rev 5 21/34

Electrical characteristics STA8090WG

Electrostatic discharge, human body model.

Electrostatic discharge, charge device model.

| rance for restage establishment (continue | · ··· |      |      |
|-------------------------------------------|-------|------|------|
| Parameter                                 | Min.  | Max. | Unit |
| SMPS coil input supply (1.6 V to 4.3 V)   | -0.3  | 4.8  | V    |
| SMPS input supply (1.6 V to 4.3 V)        | -0.3  | 4.8  | V    |

-2

-150

+2

+150

KV V

Table 10. Voltage characteristics (continued)

Note:

**Symbol** 

 $\frac{V_{\text{INM}}}{V_{\text{DD ANA}}}$ 

V<sub>ESD-HBM</sub><sup>(1)</sup>

V<sub>ESD-CDM</sub>

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

**Table 11. Thermal characteristics** 

| Symbol             | Parameter                                             | Min. | Max. | Unit |
|--------------------|-------------------------------------------------------|------|------|------|
| T <sub>oper</sub>  | Operative temperature range                           | -40  | 85   | °C   |
| Tj                 | Operative junction temperature                        | -40  | 125  | °C   |
| T <sub>stg</sub>   | Storage temperature                                   | -40  | 125  | °C   |
| R <sub>j-amb</sub> | Thermal resistance junction to ambient <sup>(1)</sup> | TBD  | TBD  | °C/W |

<sup>1.</sup> According to JEDEC specification on a 2 layers board.

**Table 12. Frequency limits** 

| Symbol           | Parameter                    | Test condition                        | Min. | Тур. | Max. | Unit |
|------------------|------------------------------|---------------------------------------|------|------|------|------|
| F <sub>CLK</sub> | Operating ARM9 CPU frequency |                                       | ı    | ı    | 196  | MHz  |
| F <sub>AHB</sub> | AHB frequency                | T <sub>C</sub> = 85 °C <sup>(1)</sup> | _    | _    | 49   | MHz  |

<sup>1.</sup> Not tested in production.

**Table 13. Power consumption** 

| Symbol          | Parameter                             | Test condition                                                              | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| P <sub>RF</sub> |                                       | G2 = GPS/Galileo;<br>T <sub>amb</sub> = 25 °C;<br>V <sub>INL2</sub> = 1.8 V | -    | 35   | _    | mW   |
|                 | RFIP power (total V <sub>INL2</sub> ) | G2 + GLONASS;<br>T <sub>amb</sub> = 25 °C;<br>V <sub>INL2</sub> = 1.8 V     | I    | 35   | ı    | mW   |
|                 |                                       | G2 + BeiDou;<br>T <sub>amb</sub> = 25 °C;<br>V <sub>INL2</sub> = 1.8 V      | _    | 35   | _    | mW   |

Balls sustaining only ±500 V are A1, A2, A3,A4, A5, A6, B2, B3, G1, G2, G3, H1, H2, H4, H7, H8, J1, J2 and J3.

**Symbol** Unit **Parameter Test condition** Min. Тур. Max.  $f_{ARM} = 196 \text{ MHz};$  $f_{AHB} = 49 \text{ MHz};$ Switchable area power;  $T_{amb} = 25 \, ^{\circ}C;$  $P_{MVR}$ 90 mW  $V_{INL1}$  = 1.8 V; UART (total V<sub>INL1</sub>) active; other peripherals inactive  $f_{ARM} = 196 MHz;$ Always ON area power  $f_{AHB} = 49 MHz;$  $P_{LPVR}$ 1 mW (total V<sub>INB</sub>)  $T_{amb} = 25 \, ^{\circ}C; V_{INB} = 3.3 \, V$  $f_{ARM} = 196 \text{ MHz};$  $f_{AHB} = 49 MHz;$  $T_{amb}$  = 25 °C; IO rings power (total mW  $P_{IO}$ 4 V<sub>INL1</sub> = 1.8 V; UART  $V_{DDIO_R1} + V_{DDIO_R2}$ active; other peripherals inactive Standby mode supply 29 μΑ I<sub>DStandby</sub> RTC current running = 32.768 KHz; Deep standby mode  $T_{amb} = 25 \, ^{\circ}C; V_{INB} = 1.8 \, V$ μΑ 7 I<sub>DDeepStandby</sub> supply current<sup>(1)</sup>

Table 13. Power consumption (continued)

## 4.6 Recommended DC operating conditions

Table 14 lists the functional recommended operating DC parameters for STA8090WG.

Table 14. Recommended DC operating conditions

| Symbol                | Parameter                                              |      | Тур. | Max. | Unit |
|-----------------------|--------------------------------------------------------|------|------|------|------|
| V <sub>CC_CHAIN</sub> | Analog supply voltage for RF chain (1.2 V)             | 1.08 | 1.20 | 1.32 | V    |
| V <sub>CC_PLL</sub>   | Analog supply voltage for PLL RF (1.2 V)               | 1.08 | 1.20 | 1.32 | V    |
| V <sub>CC_RF</sub>    | Analog supply voltage for RF (1.2 V)                   | 1.08 | 1.20 | 1.32 | V    |
| V                     | Digital supply voltage for SQI I/O ring (1.8 V)        | 1.71 | 1.80 | 1.89 | V    |
| V <sub>DD_SQI</sub>   | Digital supply voltage for SQI I/O ring (3.3 V)        | 3.00 | 3.30 | 3.60 | V    |
| $V_{DDD}$             | V <sub>DDD</sub> Power supply pins for the core logic. |      | 1.10 | 1.32 | V    |
| V                     | Digital supply voltage for I/O ring 1 (1.8 V)          | 1.71 | 1.80 | 1.89 | ٧    |
| V <sub>DDIO_R1</sub>  | Digital supply voltage for I/O ring 1 (3.3 V)          | 3.00 | 3.30 | 3.60 | V    |
| V <sub>DDIO_R2</sub>  | Digital supply voltage for I/O ring 2 (3.3 V)          | 3.00 | 3.30 | 3.60 | V    |
| V <sub>INB</sub>      | Backup LDO input supply voltage (1.6 V to 4.3 V)       | 1.60 | -    | 4.30 | ٧    |
| V <sub>INL1</sub>     | LDO1 input supply voltage to generate 1.8 V            |      | -    | 4.30 | V    |
| V <sub>INL2</sub>     | LDO2 input supply voltage to generate 1.2 V            |      | -    | 4.30 | V    |
| V <sub>INM</sub>      | SMPS coil input supply voltage to generate 1.1 V       | 2.10 | _    | 4.30 | V    |



DS11052 Rev 5 23/34

<sup>1.</sup> STDBY\_OUT pin not supported in deep standby.

Electrical characteristics STA8090WG

Table 14. Recommended DC operating conditions (continued)

| Symbol         | Parameter                          |  | Тур. | Max. | Unit |
|----------------|------------------------------------|--|------|------|------|
| $V_{DD\_ANA}$  | SMPS input supply (1.6 V to 4.3 V) |  | -    | 4.30 | V    |
| T <sub>C</sub> | Operating temperature range        |  | _    | 85   | °C   |

### 4.7 DC characteristics

*Table 15* specifies the SMPS voltage regulator characteristics.

**Table 15. SMPS DC characteristics** 

| Symbol          | Parameter              | Test condition                                                                                            | Min. | Тур. | Max. | Unit |
|-----------------|------------------------|-----------------------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>OM</sub> | Output voltage (1.2 V) | $1.6 \text{ V} \le \text{V}_{\text{INM}} \le 4.3 \text{ V};$<br>$\text{I}_{\text{OM}} \le 100 \text{ mA}$ | 1.08 | 1.20 | 1.32 | V    |
|                 | Output voltage (1.1 V) | 1.6 V $\leq$ V <sub>INM</sub> $\leq$ 4.3 V;<br>I <sub>OM</sub> $\leq$ 100 mA                              | 1.0  | 1.10 | 1.2  | V    |
| I <sub>OM</sub> | Output current         | _                                                                                                         | 0    | 1    | 100  | mA   |

Table 16 specifies the LDO1 voltage regulator characteristics.

Table 16. LDO1 DC characteristics

| Symbol           | Parameter             | Test condition                                                                                             | Min. | Тур. | Max. | Unit |
|------------------|-----------------------|------------------------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>OL1</sub> | Output voltage (1.8V) | $2.1 \text{ V} \le \text{V}_{\text{INL1}} \le 4.3 \text{ V};$<br>$\text{I}_{\text{OL1}} \le 70 \text{ mA}$ | 1.71 | 1.80 | 1.89 | ٧    |
| I <sub>OL1</sub> | Output current        | _                                                                                                          | 0    | -    | 70   | mA   |

Table 17 specifies the LDO2 voltage regulator characteristics.

Table 17. LDO2 DC characteristics

| Symbol           | Parameter      | Test condition                                                                                             | Min. | Тур. | Max. | Unit |
|------------------|----------------|------------------------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>OL2</sub> | Output voltage | $1.6 \text{ V} \le \text{V}_{\text{INL2}} \le 4.3 \text{ V};$<br>$\text{I}_{\text{OL2}} \le 30 \text{ mA}$ | 1.08 | 1.20 | 1.32 | V    |
| I <sub>OL2</sub> | Output current | _                                                                                                          | 0    | -    | 30   | mA   |

*Table 18* specifies the low voltage detection thresholds

Table 18. Low voltage detection thresholds

|                             | Parameter               | Min. | Тур.  | Max. | Unit |
|-----------------------------|-------------------------|------|-------|------|------|
| Input LVD always on         | Upper voltage threshold | _    | 1.680 | -    | V    |
| and main VRs <sup>(1)</sup> | Lower voltage threshold | _    | 1.650 | 1    | V    |
| Output LVD always           | Upper voltage threshold | -    | 0.995 | 1    | V    |
| on VR <sup>(1)</sup>        | Lower voltage threshold | _    | 0.935 | _    | V    |



|                               | Parameter                                          | Min. | Тур.  | Max. | Unit |
|-------------------------------|----------------------------------------------------|------|-------|------|------|
|                               | Upper voltage threshold @ V <sub>OM</sub> = 1.2 V  | _    | 1.142 | _    | V    |
| Output LVD main VR            | Lower voltage threshold @ V <sub>OM</sub> = 1.2 V  | -    | 1.076 | -    | ٧    |
| (1.1 or 1.2 V) <sup>(1)</sup> | Upper voltage threshold @ V <sub>OM</sub> = 1.1 V  | -    | 0.930 | -    | V    |
|                               | Lower voltage threshold @ V <sub>OM</sub> = 1.1 V  | _    | 0.900 | _    | V    |
| Output LVD main VR            | Upper voltage threshold @ V <sub>OL1</sub> = 1.8 V | -    | 1.645 | -    | ٧    |
| (1.8 V) <sup>(1)</sup>        | Lower voltage threshold @ V <sub>OL1</sub> = 1.8 V | _    | 1.626 | 1    | V    |

Table 18. Low voltage detection thresholds (continued)

*Table 19* lists the DC characteristics for all the IO digital buffers expect for the following input buffers: STBYn (J4), STDBY\_OUT (H4), WAKEUP (F4) and RSTn (G4).

Test **Symbol Parameter** Min. Тур. Max. Unit conditions 0.3 \* V<sub>DDIO</sub> ٧  $V_{DDIO} = 1.8 V$ -0.3  $V_{IL}^{(1)}$ Logical input low level voltage 8.0 ٧  $V_{DDIO} = 3.3V$ -0.3 0.7 \* V<sub>DDIO</sub> ٧  $V_{DDIO} = 1.8 V$  $V_{DDIO} + 0.3$ Logical input high level  $V_{IH}^{(1)}$ voltage  $V_{DDIO} = 3.3V$ 2.0  $V_{DDIO} + 0.3$ ٧  $V_{HYST}^{(2)}$ Schmitt-trigger hysteresis 50 mV V<sub>DDIO</sub> = 1.8 V 0.4 ٧  $V_{\mathsf{OL}}$ Low level output voltage ٧  $V_{DDIO} = 3.3V$ 0.4  $V_{\rm DDIO}$  = 1.8 V ٧ **V<sub>DDIO</sub>** - 0.4  $V_{OH}$ High level output voltage  $V_{DDIO} = 3.3V$  $V_{DDIO}$  - 0.4 ٧

Table 19. I/O buffers DC characteristics

*Table 20* lists the DC characteristics for the 1.0 V IO digital buffers input buffers: STBYn (J4), STDBY\_OUT (H4), WAKEUP (F4) and RSTn (G4).

Table 20, 1.0 V I/O buffers DC characteristics

| Symbol          | Parameter                        | Test conditions         | Min.                   | Тур. | Max.                   | Unit |
|-----------------|----------------------------------|-------------------------|------------------------|------|------------------------|------|
| V <sub>IL</sub> | Logical input low level voltage  | V <sub>OB</sub> = 1.0 V | -0.3                   | _    | 0.35 * V <sub>OB</sub> | V    |
| $V_{IH}$        | Logical input high level voltage | V <sub>OB</sub> = 1.0 V | 0.65 * V <sub>OB</sub> | _    | V <sub>OB</sub> + 0.3  | ٧    |
| V <sub>OL</sub> | Low level output voltage         | V <sub>OB</sub> = 1.0 V | _                      | _    | 0.2                    | ٧    |
| V <sub>OH</sub> | High level output voltage        | V <sub>OB</sub> = 1.0 V | V <sub>OB</sub> - 0.2  | _    | -                      | ٧    |



DS11052 Rev 5 25/34

<sup>1.</sup> By design.

<sup>1.</sup> Excludes oscillator inputs RTC XTI and XTAL IN. Refer to oscillator electrical specifications.

<sup>2.</sup> Apply to all digital inputs unless specified otherwise.

Electrical characteristics STA8090WG

### 4.8 AC characteristics

### 4.8.1 RF electrical specifications

Table 21. RFCHAIN - GALGPS filter and VGA

| Symbol            | Parameter                         | Test conditions                                  | Min | Тур              | Max                | Unit |
|-------------------|-----------------------------------|--------------------------------------------------|-----|------------------|--------------------|------|
| S11               | Input return loss                 | GPS band                                         | -   | -8               | -                  | dB   |
| f <sub>IF</sub>   | IF frequency                      | PLL in default condition with 26Mhz as reference | _   | 4.045            | -                  | MHz  |
| NF                | Noise figure                      | NF overall chain with AGC set at 0 dB            | -   | 2 <sup>(1)</sup> | 1                  | dB   |
|                   | Conversion gain from              | VGA at max gain                                  | -   | 69               | -                  | dB   |
| C <sub>G</sub>    | RF input to ADC input             | VGA at min gain                                  | _   | 119              | _                  | dB   |
| IP <sub>1dB</sub> | RF-IF-VGA input compression point | VGA min                                          | _   | -80              | -                  | dBm  |
| IRR               | Image rejection ratio             | -                                                | _   | 20               | _                  | dB   |
| BW <sub>GPS</sub> | -3dB IF bandwidth                 | GPS mode                                         | -   | 2.4              | _                  | MHz  |
| BW <sub>GAL</sub> | -30B IF Balluwidill               | Galileo mode                                     | -   | 4.8              | -                  | MHz  |
| ATT               | Alias frequency rejection         | F = 60 MHz<br>(fs = 65.474 MHz)                  | _   | 30               | -                  | dB   |
| T <sub>gGPS</sub> | IF filter group delay             | GPS mode                                         | -   | _                | 200 <sup>(1)</sup> | ns   |
| T <sub>gGAL</sub> | variation                         | Galileo mode                                     |     | -                | 30 <sup>(1)</sup>  | ns   |

<sup>1.</sup> Not tested in production.

Table 22. RFCHAIN - GLONASS/BeiDou filter and VGA

| Symbol                 | Parameter                         | Test conditions                         | Min | Тур              | Max | Unit |
|------------------------|-----------------------------------|-----------------------------------------|-----|------------------|-----|------|
| S11                    | Input return loss                 | GLONASS band                            | -   | -10              | _   | dB   |
| 311                    | input return loss                 | BeiDou band                             | -   | -7               | ı   | uБ   |
| f <sub>IFGNS/BDU</sub> | IF frequency for GLONASS          | PLL in default condition with 26 Mhz as | ı   | 8.519            | -   | MHz  |
|                        | IF frequency for BeiDou           | reference                               | -   | 10.277           | -   |      |
| NF                     | Noise figure                      | NF overall chain with AGC set at 0 dB   | -   | 2 <sup>(1)</sup> | _   | dB   |
| $C_{G}$                | Conversion gain from              | VGA at max gain                         | ı   | 68               | I   | dB   |
| G                      | RF input to ADC input             | VGA at min gain                         | 1   | 118              | -   | dB   |
| IP <sub>1dB</sub>      | RF-IF-VGA input compression point | VGA min                                 | 1   | -80              | 1   | dBm  |
| IRR                    | Image rejection ratio             | _                                       | -   | 25               | _   | dB   |

| Symbol                | Parameter                       | Test conditions                 | Min | Тур | Max               | Unit |
|-----------------------|---------------------------------|---------------------------------|-----|-----|-------------------|------|
| BW <sub>GNS/BDU</sub> | -3dB IF bandwidth               | -                               | ı   | 10  | _                 | MHz  |
| ATT                   | Alias frequency rejection       | F = 53 MHz<br>(fs = 65.474 MHz) | I   | 30  | 1                 | dB   |
| T <sub>gGNS/BDU</sub> | IF filter group delay variation | _                               | -   | -   | 20 <sup>(1)</sup> | ns   |

Table 22. RFCHAIN – GLONASS/BeiDou filter and VGA (continued)

Table 23. Synthesizer

| Symbol                 | Parameter                                         | Min. | Тур.     | Max. | Unit |
|------------------------|---------------------------------------------------|------|----------|------|------|
| F <sub>TCXO_XTAL</sub> | Input frequency for xtal amplifier <sup>(1)</sup> | 10   | _        | 52   | MHz  |
| R <sub>DIV</sub>       | Reference divider range                           | 1    | _        | 63   | -    |
| N <sub>DIV</sub>       | Loop divider range                                | 56   | _        | 2047 | _    |
| F <sub>LO</sub>        | LO operating frequency                            | _    | 3142.656 |      | MHz  |

<sup>1.</sup> That amplifier can be used also as a TCXO input buffer.

#### 4.8.2 Oscillator electrical specifications

This device contains two oscillators:

- a 32.768 kHz oscillator/buffer for RTC circuit.
- an OSCI oscillator/buffer in the RF Front-End

When used in oscillator mode, each oscillator requires a specific crystal, with parameters that must be as close as possible to the following recommended values. When used in input buffer mode, an external clock source must be applied.

#### 32.768 kHz OSCI32 oscillator specifications

The 32.768 kHz OSCI32 oscillator is connected between RTC\_XTI (oscillator amplifier input) and RTC\_XTO (oscillator amplifier output). It also requires two external capacitors of 18 pF<sup>(a)</sup>, as shown on *Figure 3*.

OSCI32 is disabled by default and must be enabled by setting bit28-OSCI\_EN of PRCC\_BACKUP\_REG0 to have 32.768KHz oscillation when an XTAL pi-network is connected to RTC\_XTI/RTC\_XTO pins.

The recommended oscillator specifications are shown in *Table 24*:

Table 24. Crystal recommended specifications

| Symbol              | Parameter                        | Min. | Тур.   | Max. | Unit |
|---------------------|----------------------------------|------|--------|------|------|
| F <sub>SXTAL</sub>  | Crystal frequency <sup>(1)</sup> | _    | 32.768 | _    | kHz  |
| LM <sub>SXTAL</sub> | Motion inductance <sup>(1)</sup> | -    | 5      | -    | kH   |

a. Using crystal with recommended characteristics as per Table 24.

DS11052 Rev 5 27/34

<sup>1.</sup> Not tested in production.

Electrical characteristics STA8090WG

|                     | <b>,</b>                                 |      | •    | <u> </u> |      |
|---------------------|------------------------------------------|------|------|----------|------|
| Symbol              | Parameter                                | Min. | Тур. | Max.     | Unit |
| $CM_{SXTAL}$        | Motional capacitance <sup>(1)</sup>      | -    | 5.0  | _        | fF   |
| CO <sub>SXTAL</sub> | Shunt capacitance <sup>(1)</sup>         | _    | 1.3  | -        | pF   |
| ESR                 | Resonance resistance <sup>(1)</sup>      | -    | _    | 80       | kΩ   |
| CL                  | External load capacitance <sup>(1)</sup> | _    | 18   | _        | pF   |

Table 24. Crystal recommended specifications (continued)

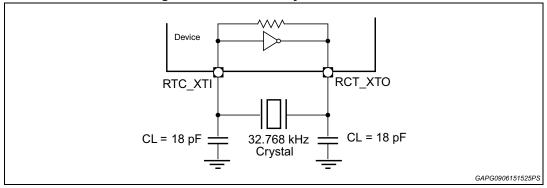

The oscillator amplifier specifications are shown in the following table:

Table 25. Oscillator amplifier specifications

| Symbol         | Parameter                                | Min. | Тур. | Max. | Unit |
|----------------|------------------------------------------|------|------|------|------|
| T <sub>S</sub> | Startup time <sup>(1)</sup>              | 0.2  | 0.3  | 0.6  | S    |
| DL             | Drive level <sup>(1)</sup>               | _    | _    | <0.1 | μW   |
| RLC            | Required load capacitance <sup>(1)</sup> | -    | 12.5 | -    | pF   |
| GM             | Startup transconductance                 | 22.5 | 33.6 | _    | μA/V |

1. Not tested in production.

Figure 3. 32.768 kHz crystal connection



To drive the 32.768 kHz crystal pins from an external clock source:

- Disable the oscillator (bit28-OSCI\_EN = 0b in PRCC\_BACKUP\_REG0 register). This
  disables the internal inverter, thus reducing the power consumption to minimum. This
  also allows to drive RTC\_XTI input even when a crystal is connected between
  RTC\_XTI and RTC\_XTO pins.
- Drive the RTC\_XTI pin with a square signal or a sine wave.

Table 26. Characteristics of external slow clock input

| Symbol                 | Parameter             | Min. | Тур. | Max. | Unit |
|------------------------|-----------------------|------|------|------|------|
| T <sub>JIT</sub> (cc)  | Cycle-to-cycle jitter | -70  | -    | 70   | ps   |
| T <sub>JIT</sub> (per) | Period jitter         | -70  | -    | 70   | ps   |

<sup>1.</sup> Not tested in production.

Table 26. Characteristics of external slow clock input (continued)

| Symbol            | Parameter  | Min. | Тур. | Max. | Unit |
|-------------------|------------|------|------|------|------|
|                   | Variation  | -500 | _    | 500  | ppm  |
| T <sub>DUTY</sub> | Duty cycle | 45   | ı    | 55   | %    |

### 4.8.3 OSCI oscillator specifications

Default supported values are 16.368 MHz, 24 MHz, 26 MHz and 48 MHz.

To enable USB peripheral the 48 MHz is mandatory

Package information **STA8090WG** 

#### 5 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

#### WLCSP77 (3.861 x 3.843 x 0.6 mm) 0.4 pitch package 5.1 information

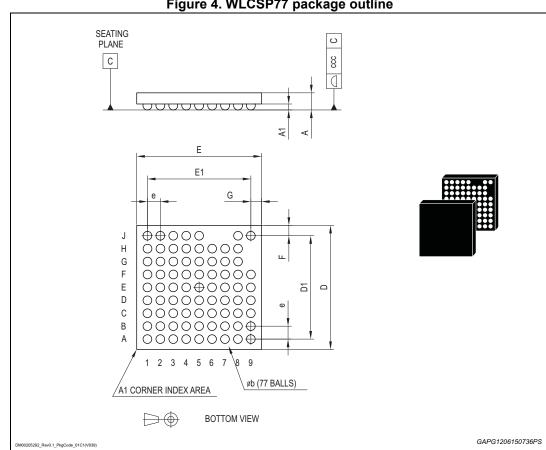



Figure 4. WLCSP77 package outline

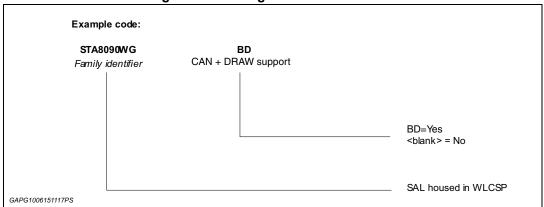
Table 27. WLCSP77 package mechanical data

| Ref | Dimensions  |      |       |                       |      |        |  |
|-----|-------------|------|-------|-----------------------|------|--------|--|
|     | Millimeters |      |       | Inches <sup>(1)</sup> |      |        |  |
|     | Min.        | Тур. | Max.  | Min.                  | Тур. | Max.   |  |
| А   | -           | -    | 0.600 | -                     | -    | 0.0236 |  |
| A1  | 0.165       | _    | -     | 0.0065                | ı    | -      |  |

STA8090WG Package information

Table 27. WLCSP77 package mechanical data (continued)

|     | Dimensions  |       |       |                       |        |        |  |
|-----|-------------|-------|-------|-----------------------|--------|--------|--|
| Ref | Millimeters |       |       | Inches <sup>(1)</sup> |        |        |  |
|     | Min.        | Тур.  | Max.  | Min.                  | Тур.   | Max.   |  |
| b   | 0.245       | 0.275 | 0.305 | 0.0096                | 0.0108 | 0.0120 |  |
| D   | 3.813       | 3.843 | 3.873 | 0.1501                | 0.1513 | 0.1525 |  |
| D1  | _           | 3.200 | _     | _                     | 0.1260 | _      |  |
| Е   | 3.831       | 3.861 | 3.891 | 0.1508                | 0.1520 | 0.1532 |  |
| E1  | -           | 3.200 | _     | -                     | 0.1260 | _      |  |
| е   | _           | 0.400 | _     | _                     | 0.0157 | _      |  |
| F   | -           | 0.321 | -     | -                     | 0.0126 | _      |  |
| G   | _           | 0.330 | _     | _                     | 0.0130 | _      |  |
| ccc | -           | _     | 0.050 | -                     | -      | 0.0020 |  |


<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

DS11052 Rev 5 31/34

Ordering information STA8090WG

## 6 Ordering information

Figure 5. Ordering information scheme



STA8090WG Revision history

## 7 Revision history

Table 28. Document revision history

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-Jun-2015 | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                 |
| 06-Jul-2016 | 2        | Updated Figure 1 and Figure 2 Updated Table 2 Changed note in Table 6 Changed title in Chapter 3.4.9 Updated Table 13, Table 15, Table 16 and Table 17 Changed title in Table 21 and Table 22 Updated Figure 5: Ordering information scheme                                                                                                      |
| 08-Nov-2016 | 3        | Added packing information in cover page Updated in <i>Table 6</i> the description of I2C_SD Updated <i>Figure 5: Ordering information scheme</i>                                                                                                                                                                                                 |
| 09-Jun-2017 | 4        | Updated:  - Table 10: Voltage characteristics: values of 'V <sub>ESD-HBM</sub> and V <sub>ESD-CDM</sub> ' parameters;  - Table 11: Thermal characteristics: values of 'T <sub>stg</sub> ' parameter;  - Table 13: Power consumption: removed 'I <sub>DSLEEP</sub> ' and added 'I <sub>DStandby</sub> and I <sub>DDeepStandby</sub> ' parameters. |
| 05-Jun-2020 | 5        | Minor text changes.                                                                                                                                                                                                                                                                                                                              |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved