ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

High Speed-10 MBit/s Logic **Gate Optocouplers**

Single Channel: HCPL0600, HCPL0601, HCPL0611 **Dual Channel:** HCPL0637, HCPL0638, HCPL0639

Description

The HCPL06XX optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output (single channel devices). The devices are housed in a compact small-outline package. This output features an open collector, thereby permitting wired OR outputs. The HCPL0600, HCPL0601 and HCPL0611 output consists of bipolar transistors on a bipolar process while the HCPL0637, HCPL0638, and HCPL0639 output consists of bipolar transistors on a CMOS process for reduced power consumption. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield provides superior common mode rejection.

Features

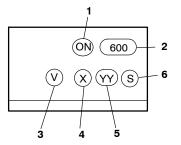
- Compact SO8 Package
- Very High Speed-10 MBit/s
- Superior CMR
- Logic Gate Output
- Strobable Output (Single Channel Devices)
- Wired OR-open Collector

Safety and Regulatory Approvals

- UL1577, 3750 VAC_{RMS} for 1 min
- DIN EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage

Typical Applications

- Ground Loop Elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- Line Receiver, Data Transmission
- Data Multiplexing
- Switching Power Supplies
- Pulse Transformer Replacement
- Computer-peripheral Interface


ON Semiconductor®

www.onsemi.com

SOIC8 CASE 751DZ

MARKING DIAGRAM

= ON Semiconductor Logo 1. ON

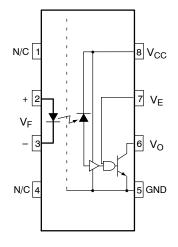
= Device Number 2. 600

4.

= VDE mark indicates

DIN EN/IEC60747-5-2 approval (Note: Only appears on parts ordered with VDE option -See Ordering Information Table)

= One-Digit Year Code, e.g. '3'


= Two Digit Work Week Ranging 5.

from '01' to '53'

6. S = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet

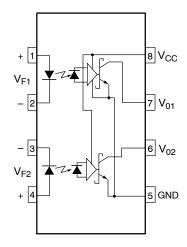


Figure 1. Single-channel Circuit Drawing (HCPL0600, HCPL0601 and HCPL0611)

Figure 2. Dual-channel Circuit Drawing (HCPL0637, HCPL0638 and HCPL0639)

TRUTH TABLE (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
H*	NC*	L*
L*	NC*	H*

^{*}Dual channel devices or single channel devices with pin 7 not connected. A 0.1 µF bypass capacitor must be connected between pins 8 and 5. (See Note 2)

SAFETY AND INSULATIONS RATING

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1,	< 150 V _{RMS}	I–IV
For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification	40/85/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	904	Vpeak
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1060	Vpeak
V _{IORM}	Maximum Working Insulation Voltage	565	Vpeak
V _{IOTM}	Highest Allowable Over-Voltage	4,000	Vpeak
	External Creepage	≥ 4	mm
	External Clearance	≥ 4	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	> 10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS (No Derating Required up to 85°C)

Symbol	Parameter		Value	Units
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +85	°C
T _J	Junction Temperature		-40 to +125	°C
EMITTER				
I _F	DC/Average Forward Input Current	Each Channel	50	mA
V _E	Enable Input Voltage Not to exceed VCC by more than 500 mV	Single Channel Devices Only	5.5	V
V _R	Reverse Input Voltage	Each Channel	5.0	V
P _I	Power Dissipation	Each Channel	45	mW
DETECTOR				
V _{CC} (1 minute max)	Supply Voltage		7.0	V
I _O	Output Current	Each Channel	15	mA
V _O	Output Voltage (each channel)	Each Channel	7.0	V
Po	Collector Output Power Dissipation	Each Channel	85	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min.	Max.	Units
I _{FL}	Input Current, Low Level		0	250	μΑ
I _{FH}	Input Current, High Level		*6.3	15	mA
V _{CC}	Supply Voltage, Output		4.5	5.5	V
V _{EL}	Enable Voltage, Low Level	Single Channel only	0	0.8	V
V _{EH}	Enable Voltage, High Level	Single Channel only	2.0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
N	Fan Out (TTL load)	Single Channel		8	TTL Loads
		Dual Channel		5	
R_{L}	Output Pull-up		330	4000	Ω

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(T_A = -40^{\circ}C \text{ TO } +85^{\circ}C \text{ UNLESS OTHERWISE SPECIFIED})$

INDIVIDUAL COMPONENT CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Тур.*	Max.	Unit
EMITTER							•
V _F	Input Forward Voltage	I _F = 10 mA				1.8	V
			T _A = 25°C			1.75	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10 μA		5.0			V
$\Delta V_F/\Delta T_A$	Input Diode Temperature Coefficient	I _F = 10 mA			-1.5		mV/°C
DETECTOR							
I _{CCH}	High Level Supply Current	$I_F = 0 \text{ mA}, \qquad V_E = 0.5 \text{ V}$	Single Channel			10	mA
		V _{CC} = 5.5 V	Dual Channel			15	
I _{CCL}	Low Level Supply Current	$I_F = 10 \text{ mA}, \qquad V_E = 0.5 \text{ V}$	Single Channel			13	mA
		V _{CC} = 5.5 V	Dual Channel			21	
I _{EL}	Low Level Enable Current	V _{CC} = 5.5 V, V _E = 0.5 V	Single Channel			-1.6	mA
I _{EH}	High Level Enable Current	$V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V}$	Single Channel			-1.6	mA
V _{EH}	High Level Enable Voltage	$V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA}$	Single Channel	2.0			V
V _{EL}	Low Level Enable Voltage	V _{CC} = 5.5 V, I _F = 10 mA (Note 3)	Single Channel			0.8	V

^{*6.3} mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0 mA or less.

SWITCHING CHARACTERISTICS ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 5$ V, $I_F = 7.5$ mA unless otherwise specified)

Symbol	AC Characteristics	Test Con	ditions	Device	Min.	*	Max.	Unit
T _{PLH}	Propagation Delay Time to Output High Level	$R_L = 350 \Omega$, T $C_L = 15 pF (Note 4)$	A = 25°C	All	20		75	ns
		(Fig. 22)					100	
T _{PHL}	Propagation Delay Time to Output Low Level	R_L = 350 Ω, T_A = 25°C C_L = 15 pF (Note 5)		All	25		75	ns
	to Output Low Level	(Fig. 22)					100	
T _{PHL} -T _{PLH}	Pulse Width Distortion	$R_L = 350 \ \Omega, \ C_L = 15 \ p$ (Fig. 20)	F	All			35	ns
t _r	Output Rise Time (10–90%)	R_L = 350 Ω, C_1 = 15 pF (Note 6)		Single Ch		50		ns
	(10-90%)	(Fig. 22)		Dual Ch		17		
t _f	Output Fall Time (90–10%)	$R_L = 350 \Omega$,	= :			12		ns
	(90-10%)	C _L = 15 pF (Note 7) (Fig. 22)		Dual Ch		5		
^t ELH	Enable Propagation De- lay Time to Output High Level	I_F = 7.5 mA, V_{EH} = 3.5 V, R_L = 350 Ω , C_L = 15 pF (Note 8) (Fig. 23)		HCPL0600 HCPL0601 HCPL0611		20		ns
t _{EHL}	Enable Propagation De- lay Time to Output Low Level	$R_L = 350 \Omega$,	I_F = 7.5 mA, V_{EH} = 3.5 V, R_L = 350 Ω , C_L = 15 pF (Note 9) (Fig. 23)			20		ns
CM _H	Common Mode Transient Immunity	$R_L = 350 \Omega,$ $T_A = 25^{\circ}C,$	V _{CM} = 10 V	HCPL0600 HCPL0637	5,000			V/μs
	(at Output High Level)	I _F = 0 mA, V _{OH} (Min.) = 2.0 V (Note 10)	V _{CM} = 50 V	HCPL0601 HCPL0638	10,000			
		(Fig. 24, 25)	V _{CM} = 1,000 V	HCPL0611	15,000			1
				HCPL0639	25,000]
CM _L		$R_L = 350 \Omega,$ $T_A = 25^{\circ}C,$	V _{CM} = 10 V	HCPL0600 HCPL0637	5,000			V/μs
		$I_F = 7.5 \text{ mA},$ $V_{OL} \text{ (Max.)} = 0.8 \text{ V}$ (Note 11)	V _{CM} = 50 V	HCPL0601 HCPL0638	10,000			
		(Fig. 24, 25)	V _{CM} = 1,000 V	HCPL0611	15,000			1
				HCPL0639	25,000			1

TRANSFER CHARACTERISTICS ($T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified)

Symbol	DC Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
Іон	High Level Output Current	V_{CC} = 5.5 V, V_{O} = 5.5 V, I_{F} = 250 μ A, V_{E} = 2.0 V (Note 3)			100	μА
V _{OL}	Low Level Output Voltage	V_{CC} = 5.5 V, I_F = 5 mA, V_E = 2.0 V, I_{OL} = 13 mA (Note 3)			0.6	V
I _{FT}	Input Threshold Current	V_{CC} = 5.5 V, V_{O} = 0.6 V, V_{E} = 2.0 V, I_{OL} = 13 mA			5	mA

^{*}All typical values are at V_{CC} = 5 V, T_A = 25°C.

ISOLATION CHARACTERISTICS (T_A = -40°C to +85°C unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25$ °C, $t = 5$ s, $V_{I-O} = 3000$ VDC (Note 12)			1.0*	μА
V _{ISO}	Withstand Insulation Test Voltage	$R_H < 50\%, T_A = 25^{\circ}C,$ $I_{1-O} \le 2 \mu A, t = 1 min. (Note 12)$	3750			V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500 V (Note 12)		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz (Note 12)		0.6		pF

^{*}All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Notes:

- 2. The V_{CC} supply to each optoisolator must be bypassed by a 0.1 μ F capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins of each device.
- 3. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 5. t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. tf Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- t_{ELH} Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 9. t_{EHL} Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 10. $\text{CM}_{\text{H}}-\text{The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., <math>V_{\text{OUT}} > 2.0 \text{ V}$). Measured in volts per microsecond ($V/\mu s$).
- CM_L The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8V). Measured in volts per microsecond (V/μs).
- 12. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.

TYPICAL PERFORMANCE CURVES

(HCPL0600, HCPL0601 and HCPL0611 only)

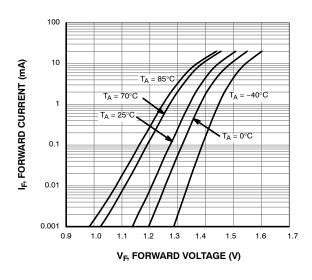
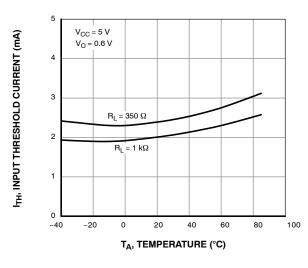



Figure 3. Forward Current vs. Input Forward Voltage

Figure 4. Output Voltage vs. Forward Current

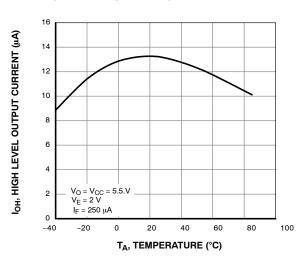


Figure 5. Input Threshold Current vs. Temperature

Figure 6. High Level Output Current vs. Temperature

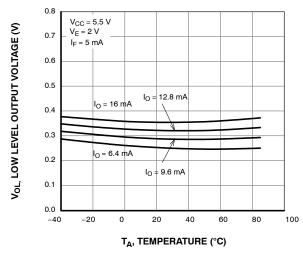


Figure 7. Low Level Output Voltage vs. Temperature

Figure 8. Low Level Output Current vs. Temperature

TYPICAL PERFORMANCE CURVES

(HCPL0600, HCPL0601 and HCPL0611 only)

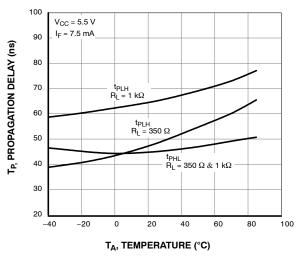


Figure 9. Propagation Delay vs. Temperature

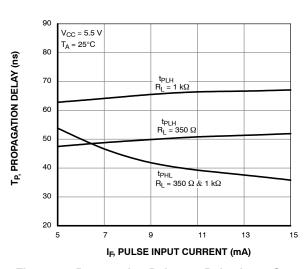


Figure 10. Propagation Delay vs. Pulse Input Current

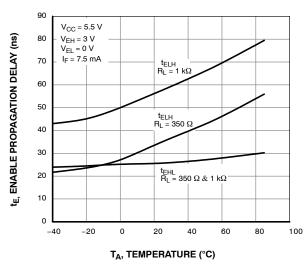


Figure 11. Typical Enable Propagation Delay vs.
Temparature

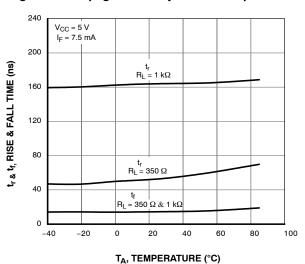


Figure 12. Typical Rise and Fall Time vs. Temperature

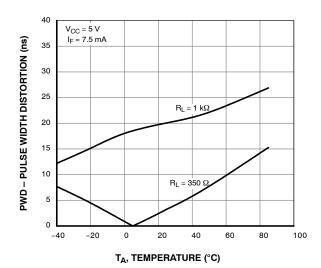


Figure 13. Typical Pulse Width Distortion vs. Temperature

TYPICAL PERFORMANCE CURVES

(HCPL0637, HCPL0638 and HCPL0639 only)

I_{OL}, LOW LEVEL OUTPUT CURRENT (nA)

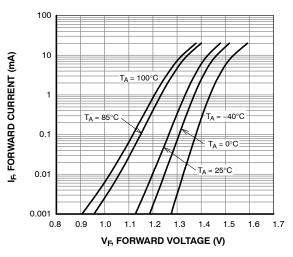


Figure 14. Input Forward Current vs. Forward Voltage

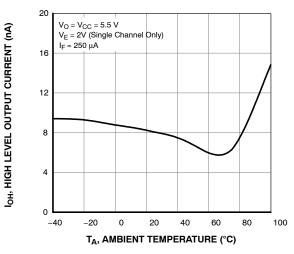


Figure 16. High Level Output Current vs.

Ambient Temperature

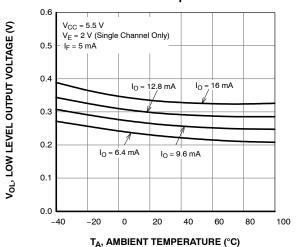


Figure 18. Low Level Output Voltage vs.
Ambient Temperature

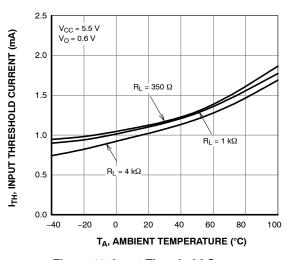


Figure 15. Input Threshold Current vs.

Ambient Temperature

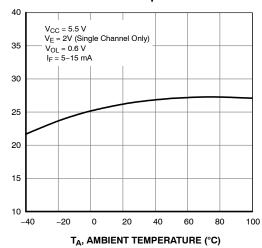


Figure 17. Low Level Output Current vs.

Ambient Temperature

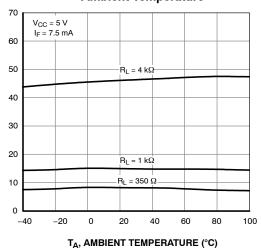
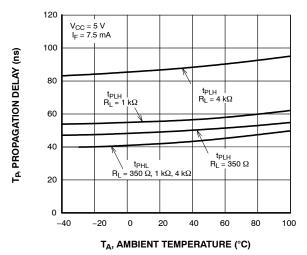



Figure 19. Pulse Width Distortion vs. Ambient Temperature

PWD - PULSE WIDTH DISTORTION (ns)

TYPICAL PERFORMANCE CURVES

(HCPL0637, HCPL0638 and HCPL0639 only)

7 350 V_{CC} = 5 V I_F = 7.5 mA 6 300 $t_r - R_L = 4 k\Omega$ 5 250 t_r, RISE TIME (ns) FALL TIME (ns) 4 200 150 3 $t_f - R_I = 350 \Omega$, 1 k Ω , 4 k Ω 2 100 R_L = 50 – R_L = 350 Ω 0 0 -40 -20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C)

Figure 20. Propagation Delay vs. Ambient Temperature

Figure 21. Rise and Fall Times vs.

Ambient Temperature

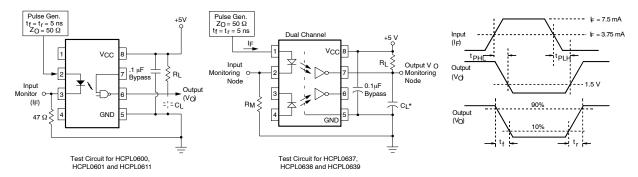


Figure 22. Test Circuit and Waveforms for tpLH, tpHL, tr and tf

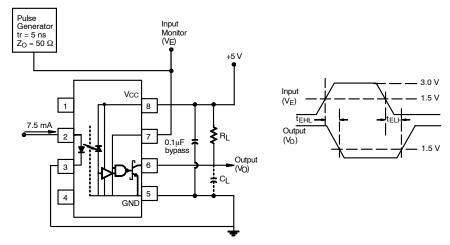


Figure 23. Test Circuit t_{EHL} and t_{ELH}

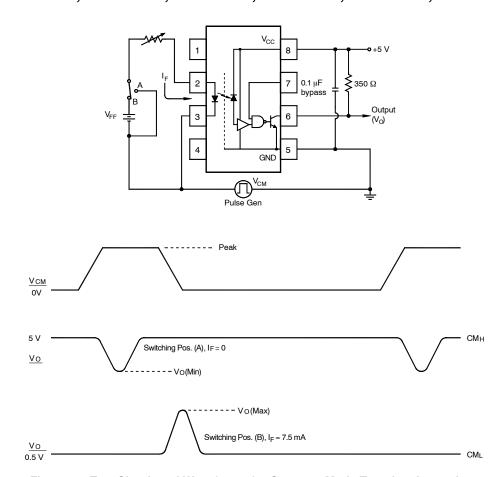
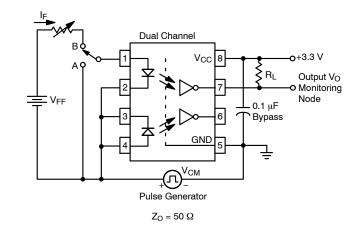
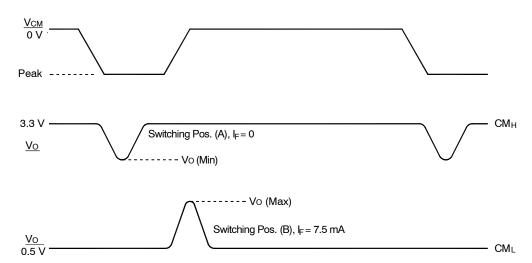
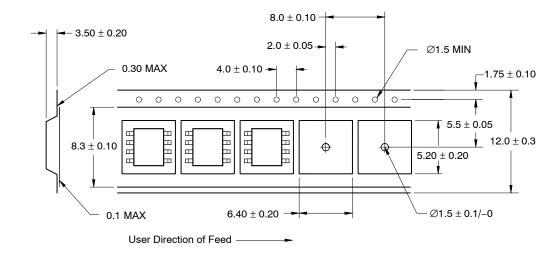



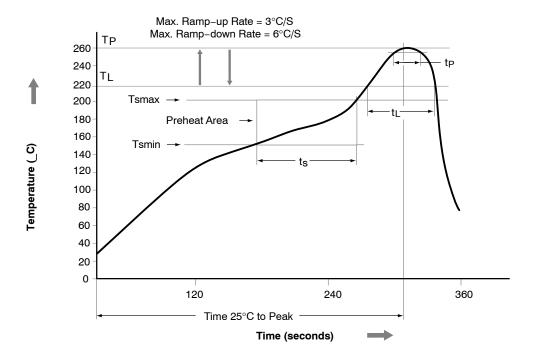
Figure 24. Test Circuit and Waveforms for Common Mode Transient Immunity (HCPL0600, HCPL0601 and HCPL0611)




Figure 25. Test Circuit and Waveforms for Common Mode Transient Immunity (HCPL0637, HCPL0638 and HCPL0639)

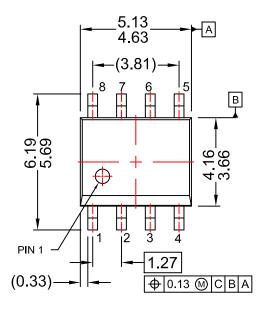
ORDERING INFORMATION

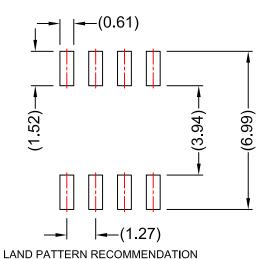
Part Number	Package	Packing Method [†]
HCPL0600	Small Outline 8-Pin	Tube (50 Units)
HCPL0600R2	Small Outline 8-Pin	Tape and Reel (2500 Units)
HCPL0600V	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
HCPL0600R2V	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (2500 Units)


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

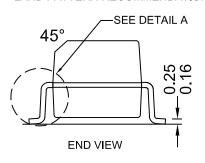
CARRIER TAPE SPECIFICATIONS

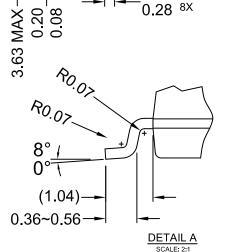
^{13.} The product orderable part number system listed in this table also applies to the HCPL0601, HCPL0611, HCPL0637, HCPL0638 and HCPL0639 product.


REFLOW PROFILE



Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60-150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.


SOIC8 CASE 751DZ ISSUE O


DATE 30 SEP 2016

0.53 0.28 8X NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M.

DOCUMENT NUMBER:	98AON13733G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC8		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnotized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative