

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

April 1988 Revised September 2000

74F112

Dual JK Negative Edge-Triggered Flip-Flop

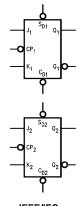
General Description

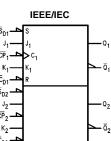
The 74F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{\mathbb{S}}_{\mathbb{D}}$ or $\overline{\mathbb{C}}_{\mathbb{D}}$ prevents clocking and forces Q or $\overline{\mathbb{Q}}$ HIGH, respectively.

Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

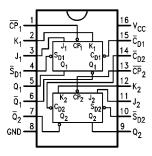
Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock


Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH


Ordering Code:

Order Number	Package Number	Package Description
74F112SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F112SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F112PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS0

DS009472

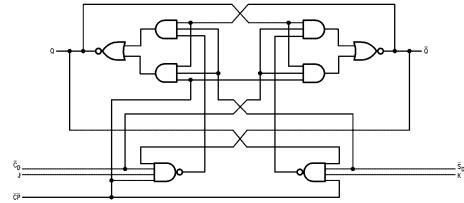
www.fairchildsemi.com

Unit Loading/Fan Out

Dia Name	December 1	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 μA/–2.4 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/5.0	20 μA/-3.0 mA	
\overline{S}_{D1} , \overline{S}_{D2}	Direct Set Inputs (Active LOW)	1.0/5.0	20 μA/-3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA	

Truth Table

		Outputs				
\overline{s}_{D}	\overline{c}_{D}	CP	J	K	Q	Q
L	Н	Х	Х	Х	Н	L
Н	L	Χ	Х	Χ	L	Н
L	L	Χ	Χ	Χ	Н	Н
Н	Н	\sim	h	h	\overline{Q}_0	Q_0
Н	Н	\sim	1	h	L	Н
Н	Н	\sim	h	1	Н	L
Н	Н	\sim	1	- 1	Q_0	\overline{Q}_0


H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial

 $\begin{array}{lll} & & \\ \sim & = \text{HIGH-to-LOW Clock Transition} \\ & & \\$

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

(One Half Shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

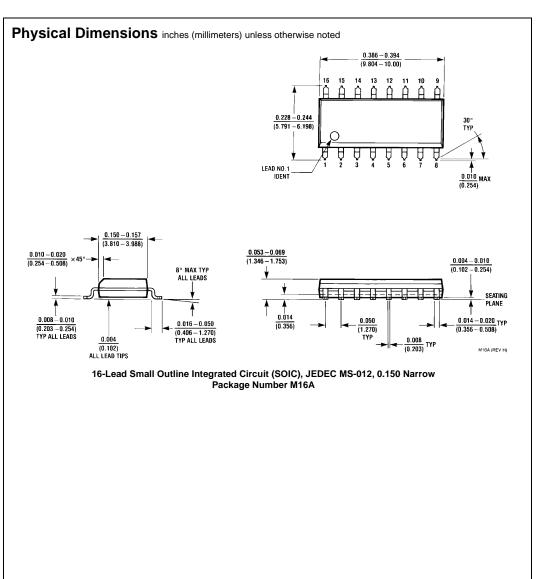
0°C to +70°C Free Air Ambient Temperature Supply Voltage +4.5V to +5.5V

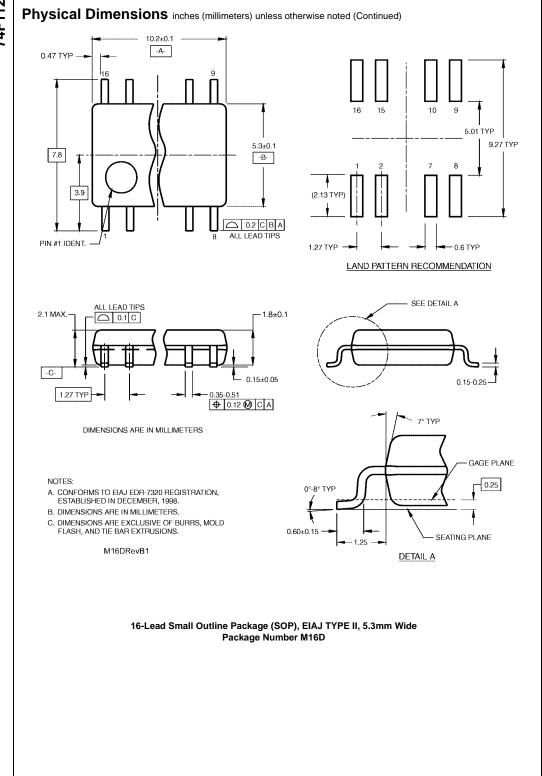
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				8.0	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	$5\% V_{CC}$	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage				0.5	V	Min	I _{OL} = 20 IIIA	
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V	
	Current				5.0	μА	IVIAX	v _{IN} = 2.7 v	
I _{BVI}	Input HIGH Current				7.0	7.0 μΑ		V _{IN} = 7.0V	
	Breakdown Test				7.0	μΛ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH			E0.	50	50 μΑ	Max	V -V	
	Leakage Current				30	μΛ	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			•	0.0	All other pins grounded	
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.73	μΛ	0.0	All other pins grounded	
I _{IL}	Input LOW Current				-0.6			$V_{IN} = 0.5V (J_n, K_n)$	
					-2.4	mA	Max	$V_{IN} = 0.5V (\overline{CP}_n)$	
					-3.0			$V_{IN} = 0.5V (\overline{C}_{Dn}, \overline{S}_{Dn})$	
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			12	19	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			12	19	mA	Max	$V_O = LOW$	


www.fairchildsemi.com


AC Electrical Characteristics


Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz	
	Propagation Delay	2.0	5.0	6.5	2.0	7.5		
t _{PHL}	\overline{CP}_{n} to Q_{n} or \overline{Q}_{n}	2.0	5.0	6.5	2.0	7.5	ns	
t _{PLH}	Propagation Delay	2.0	4.5	6.5	2.0	7.5	20	
t _{PHL}	\overline{C}_{Dn} , \overline{S}_{Dn} to \overline{Q}_{n} , \overline{Q}_{n}	2.0	4.5	6.5	2.0	7.5	ns	

AC Operating Requirements

		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units	
Symbol	Parameter						
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0			
t _S (L)	J_n or K_n to \overline{CP}_n	3.0		3.5		ns	
t _H (H)	Hold Time, HIGH or LOW	0		0		115	
t _H (L)	J_n or K_n to \overline{CP}_n	0		0			
t _W (H)	CP Pulse Width	4.5		5.0		ns	
t _W (L)	HIGH or LOW	4.5		5.0		115	
t _W (L)	Pulse Width, LOW	4.5		5.0		ns	
	\overline{C}_{Dn} or \overline{S}_{Dn}	4.5		3.0		115	
t _{REC}	Recovery Time	4.0		5.0		ns	
	\overline{S}_{Dn} , \overline{C}_{Dn} to \overline{CP}	7.0		0.0		110	

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com