Single Inverter

The NL17SZ04E is an inverter in three tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive.

Features

- Tiny SOT-353 Package
- 24 mA Sink and Source Output Capability
- Over-Voltage Tolerant Inputs and Outputs
- Chip Complexity: FETs = 20
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

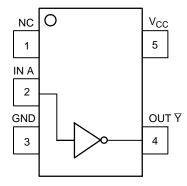


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

SOT-353/SC70-5/SC-88A DF SUFFIX CASE 419A

MARKING

L5 = Specific Device Marking

M = Date Code*

= Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT

Pin	Function
1	NC
2	IN A
3	GND
4	OUT ₹
5	V _{CC}

FUNCTION TABLE

Input	Output
Α	Y
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage	-0.5 to +6.5	V	
VI	DC Input Voltage	-0.5 to +6.5	V	
Vo	DC Output Voltage Active Mode, High or Low State (Note 1) Power–Down Mode (V _{CC} = 0 V)		V	
I _{IK}	DC Input Diode Current V _I < GND	-50	mA	
I _{OK}	DC Output Diode Current V _O < GND	-50	mA	
IO	DC Output Sink Current	±50	mA	
I _{CC}	DC Supply Current per Supply Pin	±100	mA	
I _{GND}	DC Ground Current per Supply Pin	±100	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C	
TJ	Junction Temperature Under Bias	+150	°C	
θ_{JA}	Thermal Resistance (Note 2)	350	°C/W	
P _D	Power Dissipation in Still Air at 85°C	186	mW	
MSL	Moisture Sensitivity	Level 1		
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
ESD	ESD Classification Human Body Model (Note 3) Charged Device Model (Note 4)		V	
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 5)	±100	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. IO absolute maximum rating must be observed.

- 2. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.

 3. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage	Operating Data Retention	1.65 1.5	5.5 5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	(High or Low State) (V _{CC} = 0 V)	0	V _{CC} 5.5	V
V _{OUT}	DC Output Voltage (SOT–953 Package) (High or Low State)			V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C	
t _r , t _f	Input Rise and Fall Time	$\begin{array}{c} V_{CC} = 2.5 \ V \ \pm \ 0.2 \ V \\ V_{CC} = 3.0 \ V \ \pm \ 0.3 \ V \\ V_{CC} = 5.0 \ V \ \pm \ 0.5 \ V \end{array}$	0 0 0	20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	$T_A = 25^{\circ}C$		-55°C ≤ T _A ≤ 125°C			
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output Voltage	$I_{OH} = -100 \mu A$	1.65 to 5.5	V _{CC} – 0.1	V _{CC}		V _{CC} - 0.1		V
	$V_{IN} = V_{IL}$	$I_{OH} = -4 \text{ mA}$	1.65	1.29	1.52		1.29		
		I _{OH} = -8 mA	2.3	1.9	2.1		1.9		
		I _{OH} = -12 mA	2.7	2.2	2.4		2.2		
		I _{OH} = -16 mA	3.0	2.4	2.7		2.4		
		I _{OH} = -24 mA	3.0	2.3	2.5		2.3		
		$I_{OH} = -32 \text{ mA}$	4.5	3.8	4.0		3.8		
V _{OL}	Low-Level Output Voltage	I _{OL} = 100 μA	1.65 to 5.5		0.0	0.1		0.1	V
	$V_{IN} = V_{IH}$	I _{OH} = 4 mA	1.65		0.08	0.24		0.24	
		I _{OL} = 8 mA	2.3		0.20	0.3		0.3	
		I _{OL} = 12 mA	2.7		0.22	0.4		0.4	
		I _{OL} = 16 mA	3.0		0.28	0.4		0.4	
		I _{OL} = 24 mA	3.0		0.38	0.55		0.55	
		I _{OL} = 32 mA	4.5		0.42	0.55		0.55	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5		±0.1			±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1		10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1		10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS $t_R = t_F = 2.5 \text{ ns}$

				Т	A = 25°C	;	-55°C ≤ T	<u> 4</u> ≤ 125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay (Figure 3 and 4)	$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	1.65 1.8		5.3 4.4	11.4 9.5		12.0 10.0	ns
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	2.5 ± 0.2		3.5	6.5		7.0	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	3.3 ± 0.3		2.1	4.5		4.7	
		$R_L = 500 \Omega, C_L = 50 pF$			2.9	5.5		5.2	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	5.0 ± 0.5		1.8	3.9		4.1	
		$R_L = 500 \Omega, C_L = 50 pF$			2.4	4.3		4.5	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	>2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	9 11	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

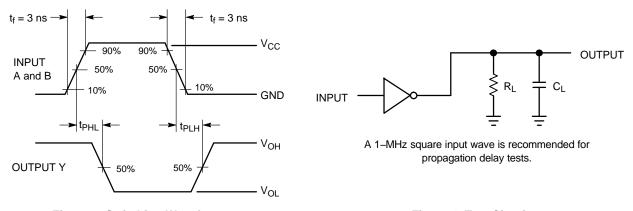


Figure 3. Switching Waveform

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NL17SZ04EDFT2G	SC-88A/SOT-353/SC-70-5 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

NOTES

DIM

D

G

Н

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

INCHES

MIN MAX

0.071 0.087

0.031 0.043 0.004 0.012

0.026 BSC

0.004 0.010

0.004 0.012

0.008 REF

S 0.079 0.087

0.004

B | 0.045 | 0.053

419A-01 OBSOLETE. NEW STANDARD 419A-02. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE

MILLIMETERS

MIN MAX

0.10 0.30

0.10 0.25

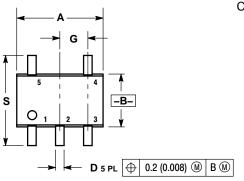
0.10 0.30

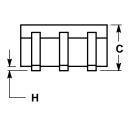
0.20 REF 2.00 2

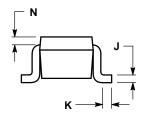
0.65 BSC

2.20

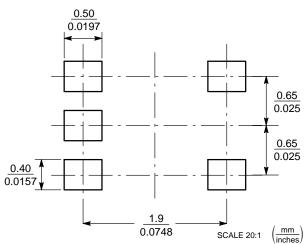
1.35


1.10


0.10


1.80

1.15


0.80

SOLDER FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NL17SZ04E/D

Phone: 81–3–5817–1050