

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

74AC169 4-Stage Synchronous Bidirectional Counter

General Description

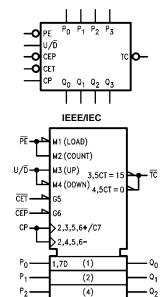
The AC169 is fully synchronous 4-stage up/down counter. The AC169 is a modulo-16 binary counter. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the Clock.

Features

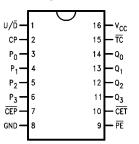
- I_{CC} reduced by 50%
- Synchronous counting and loading
- Built-In lookahead carry capability
- Presettable for programmable operation

November 1988

Revised November 1999


Outputs source/sink 24 mA

Ordering Code:


Order Number	Package Number	Package Description
74AC169SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC169SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC169MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC169PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Pulse Input
P ₀ –P ₃	Parallel Data Inputs
PE	Parallel Enable Input
U/D	Up-Down Count Control Input
$Q_0 - Q_3$	Flip-Flop Outputs
TC	Terminal Count Output

FACT™ is a trademark of Fairchild Semiconductor Corporation.

P,

© 1999 Fairchild Semiconductor Corporation DS009934

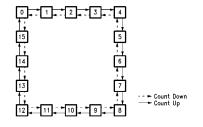
(8)

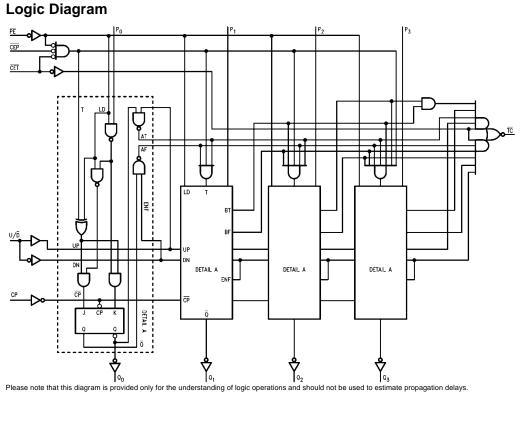
Q3

Functional Description

The AC169 uses edge-triggered J-K-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathsf{P}_0\text{-}\mathsf{P}_3$ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both $\overrightarrow{\text{CEP}}$ and $\overrightarrow{\text{CET}}$ must be LOW and $\overrightarrow{\text{PE}}$ must be HIGH; the U/D input then determines the direction of counting. The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 15 in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. If an illegal state occurs, the AC169 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on \overline{TC} . For this reason the use of \overline{TC} as a clock signal is not recommended (see logic equations below).

- 1. Count Enable = $\overline{\text{CEP}} \cdot \overline{\text{CET}} \cdot \overline{\text{PE}}$
- 2. Up: $\overline{\mathsf{TC}} = \mathsf{Q}_0 \bullet \mathsf{Q}_1 \bullet \mathsf{Q}_2 \mathsf{Q}_3 \bullet (\mathsf{Up}) \bullet \overline{\mathsf{CET}}$
- 3. Down: $\overline{\text{TC}} = \overline{\text{Q}}_0 \bullet \overline{\text{Q}}_1 \bullet \overline{\text{Q}}_2 \bullet \overline{\text{Q}}_3 \bullet (\text{Down}) \bullet \overline{\text{CET}}$




PE	CEP	CET	U/D	Action on Rising
			0/0	Clock Edge
L	Х	Х	Х	Load (P _n to Q _n)
н	L	L	Н	Count Up (Increment)
н	L	L	L	Count Down (Decrement)
н	н	Х	Х	No Change (Hold)
н	Х	н	Х	No Change (Hold)

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

State Diagram

Absolute Maximum	Recommended Opera	
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions
DC Input Diode Current (IIK)		Supply Voltage (V _{CC})
$V_{I} = -0.5V$	–20 mA	Input Voltage (V _I)
$V_{I} = V_{CC} + 0.5V$	+20 mA	Output Voltage (V _O)
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V	Operating Temperature (T_{A})
DC Output Diode Current (I _{OK})		Minimum Input Edge Rate $(\Delta V/\Delta t)$
$V_{O} = -0.5V$	–20 mA	V_{IN} from 30% to 70% of V_{CC}
$V_{O} = V_{CC} + 0.5V$	+20 mA	V _{CC} @ 3.3V, 4.5V, 5.5V
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V	
DC Output Source		
or Sink Current (I _O)	±50 mA	
DC V _{CC} or Ground Current		
per Output Pin (I _{CC} or I _{GND})	±50 mA	Note 1: Absolute maximum ratings are those v
Storage Temperature (T _{STG})	-65°C to +150°C	to the device may occur. The databook specifi out exception, to ensure that the system desi
Junction Temperature (T_{J})		supply, temperature, and output/input loading
PDIP	140°C	recommend operation of FACT™ circuits outsid

Operating 2.0V to 6.0V 0V to V_{CC} 0V to $V_{\mbox{CC}}$ $-40^{\circ}C$ to $+85^{\circ}C$ T_A)

74AC169

125 mV/ns

gs are those values beyond which damage tabook specifications should be met, with-e system design is reliable over its power input loading variables. Fairchild does not t circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	V_{CC} $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol		(V)	Typ Guaranteed Limits		Units	Conditions		
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{ОН}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND	
(Note 4)	Leakage Current	5.5		±0.1	±1.0	μΑ	vi – v _{CC} , GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$	
(Note 4)	Supply Current	ent 5.5		4.0	40.0	μΑ	or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

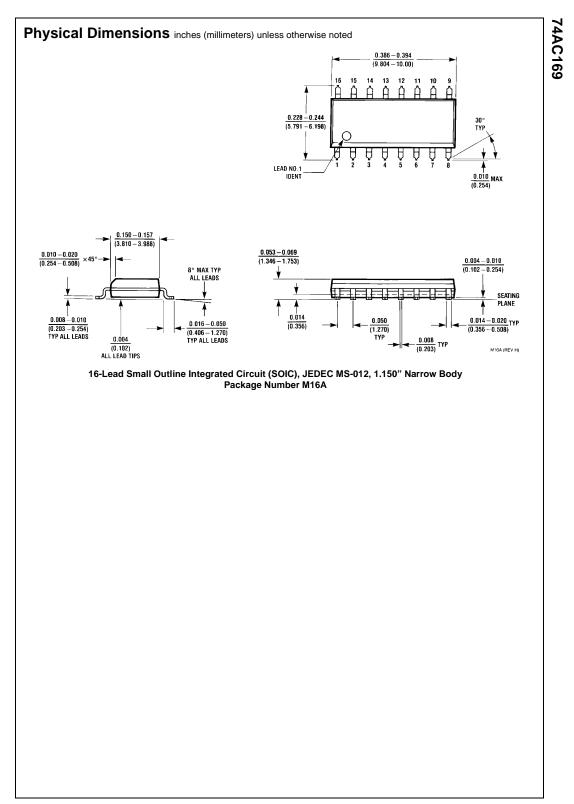
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

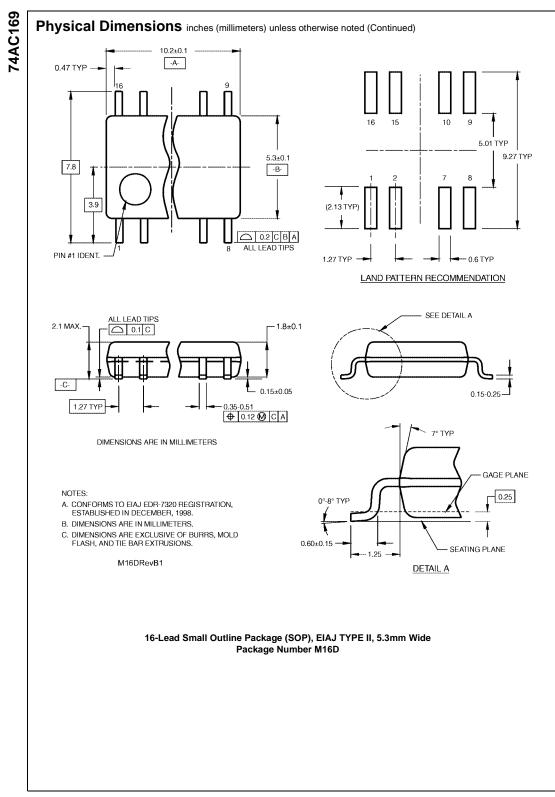
74AC169

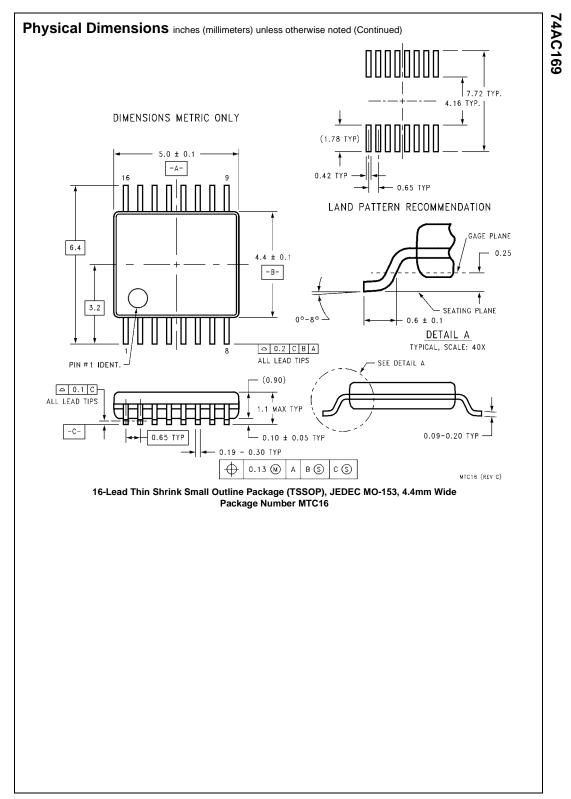
AC Electrical Characteristics

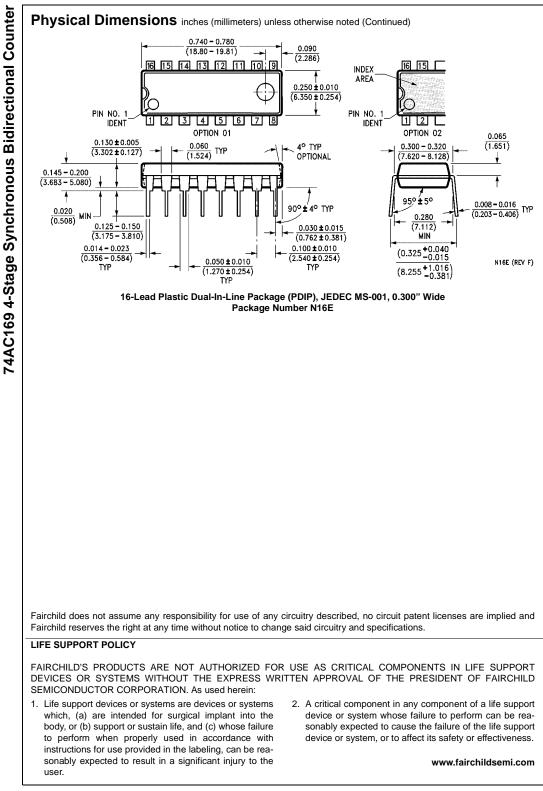
		V _{CC} (V)	$T_A = +25^{\circ}C$, $C_L = 50 \text{ pF}$			$T_{A} = -40^{\circ}C$ to $+85^{\circ}C, C_{L} = 50 \ pF$		
Symbol	Parameter	(Note 5)	Min	Тур	Max	Min	Max	Units
f _{MAX}	Maximum Clock	3.3	75	118		65		MU
	Frequency	5.0	100	154		90		MHz
t _{PLH}	Propagation Delay	3.3	2.5	9.5	13.0	2.0	14.5	ns
	CP to Q _n (PE HIGH or LOW)	5.0	1.5	7.0	10.0	1.5	11.0	115
t _{PHL}	Propagation Delay	3.3	2.5	10.5	14.5	2.0	16.0	ns
	CP to Q _n (PE HIGH or LOW)	5.0	1.5	7.5	11.0	1.5	12.0	115
t _{PLH}	Propagation Delay	3.3	4.5	13.5	18.0	3.5	22.0	ns
	CP to TC	5.0	3.0	9.5	13.0	2.0	14.0	
t _{PHL}	Propagation Delay	3.3	3.5	13.5	18.0	3.0	20.5	
	CP to TC	5.0	2.5	9.5	13.0	2.0	14.5	ns
t _{PLH}	Propagation Delay	3.3	3.5	11.0	15.0	3.0	16.5	ns
	CET to TC	5.0	3.0	8.0	10.5	2.5	12.0	115
t _{PHL}	Propagation Delay	3.3	3.0	9.5	12.5	2.5	14.5	
	CET to TC	5.0	2.0	7.0	9.0	1.5	10.0	ns
t _{PLH}	Propagation Delay	3.3	3.5	11.0	15.0	3.0	17.0	
	U/D to TC	5.0	2.5	8.0	10.5	2.0	12.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	10.0	13.5	2.0	15.5	
	U/D to TC	5.0	1.5	7.0	9.5	1.5	10.5	ns


Note 5: Voltage Range 3.3 is 3.3V \pm 0.3V $\,$ Voltage Range 5.0 is 5.0V \pm 0.5V $\,$

AC Operating Requirements


Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C, C_L = 50 \text{ pF}$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $C_L = 50$ pF	Units	
Gymbol	Falameter	(Note 6)	Тур		Guaranteed Minimum	Units	
t _S	Setup Time, HIGH or LOW	3.3	3.0	4.5	5.0	20	
	P _n to CP	5.0	1.5	2.5	2.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-1.5	0.5	0.5		
	P _n to CP	5.0	-0.5	1.5	1.5	ns	
t _S	Setup Time, HIGH or LOW	3.3	7.5	10.5	12.5		
	CEP to CP	5.0	4.5	7.0	8.0	ns	
t _H	Hold Time, HIGH or LOW	3.3	-4.5	0	0		
	CEP to CP	5.0	-2.0	0.5	1.0	ns	
t _S	Setup Time, HIGH or LOW	3.3	7.0	10.0	12.0		
	CET to CP	5.0	4.0	6.5	8.0	ns	
t _H	Hold Time, HIGH or LOW	3.3	3.3 -6.0 0 0	0	20		
	CET to CP	5.0	-4.0	0.5	1.0	ns	
t _S	Setup Time, HIGH or LOW	3.3	3.5	5.5	6.5		
	PE to CP	5.0	2.0	3.5	4.0	ns	
t _H	Hold Time, HIGH or LOW	3.3	-3.5	0	0		
	PE to CP	5.0	-1.5	0.5	0.5	ns	
t _S	Setup Time, HIGH or LOW	3.3	7.0	10.0	11.5		
	U/D to CP	5.0	4.5	6.5	7.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-7.0	0	0		
	U/D to CP	5.0	-4.0	0.5	0.5	ns	
t _W	CP Pulse Width,	3.3	2.0	3.0	4.0		
	HIGH or LOW	5.0	2.0	3.0	3.0	ns	


Capacitance


Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	60.0	pF	$V_{CC} = 5.0V$

5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.