

TDA7721

5 band car audio processor

Datasheet - production data

- Q programmable in 4 steps (0.75/1.0/1.25/2)
- -15 to 15 dB range with 1 dB resolution
- EQ4
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (2 kHz/ 2.5 kHz/ 3.15 kHz/ 4 kHz)
 - Q programmable in 4 steps (0.75/1.0/1.25/2)
 - -15 to 15 dB range with 1 dB resolution
- EQ5
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (6.3 kHz/ 8 kHz / 10 kHz/ 12.5 kHz)
 - Q programmable in 4 steps (0.75/1.0/1.25/2)
 - 15 to 15 dB range with 1 dB resolution
- Highpass
 - 2nd order frequency response
 - Center frequency programmable in 5 steps (63 Hz / 100 Hz / 120 Hz / 150 Hz/ 180 Hz)
- Subwoofer
 - 2nd order low pass filter
 - Programmable cut off frequency
 - (55 Hz / 85 Hz / 120 Hz / 160 Hz)
- Speaker
 - 6 independent soft step speaker controls
 - +15 dB to -79 dB with 1 dB steps
 - Three selectable output DC level
 - Direct mute
 - Mute functions
 - Direct mute
 - Digitally controlled SoftMute with 4 programmable mute-times
 - (0.48 ms / 0.96 ms / 8 ms / 16 ms)
- Offset detection
 - Offset voltage detection circuit for on-board power amplifier failure diagnosis

Table 1. Device summary

Order code	Package	Packing
TDA7721	TSSOP28	Tube
TDA7721TR	TSSOP28	Tape and reel

January 2014

DocID025427 Rev 3

This is information on a product in full production.

Features

- Input multiplexer
 - QD1 to QD2: guasi-differential stereo input
 - SE1 to SE3: stereo single-ended input
- InGain
 - 6 dB with 1 dB steps
- Loudness
 - 2nd order frequency response
 - Programmable center frequency (400 Hz / 800 Hz / 2400 Hz)
 - 15 dB with 1 dB steps
 - Selectable high frequency boost
 - Selectable flat-mode (constant attenuation)
- Volume
 - +23 dB to -79 dB with 1 dB step resolution
 - SoftStep control with programmable blend times
- EQ1
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (63 Hz / 80 Hz/ 100 Hz /125 Hz)
 - Q programmable in 4 steps (1.0/1.25/1.5/2.0)
 - -15 to 15 dB range with 1 dB resolution
- EQ2
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (200 Hz/ 250 Hz/ 315 Hz/ 400 Hz)
 - Q programmable in 4 steps (1.0/1.25/1.5/2.0)
- -15 to 15 dB range with 1 dB resolution
- EQ3
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (630 Hz/ 800 Hz/ 1 kHz/ 1.25 kHz)

Contents

1	Descr	iption a	nd block diagram6
	1.1	Descript	tion
	1.2	Block di	agram
2	Din co	nnectiv	ons and description
2			-
	2.1	Pin conr	nections
3	Electr	rical spe	ecifications
	3.1	Thermal	l data
	3.2	Absolute	e maximum ratings
	3.3	Electrica	al characteristics
4	Descr	ription o	of audioprocessor
	4.1	-	age
		4.1.1	Single-ended stereo input (SE1, SE2, SE3)
		4.1.2	Quasi-differential stereo Input (QD1,QD2)
		4.1.3	Fast charge
	4.2	Input ga	in
	4.3	Loudnes	ss 16
		4.3.1	Loudness attenuation
		4.3.2	Peak frequency
		4.3.3	High frequency boost
		4.3.4	Flat mode
	4.4	SoftMute	e 18
	4.5	Volume	
	4.6	EQ1	
		4.6.1	EQ1 attenuation
		4.6.2	Center frequency
		4.6.3	EQ1 quality factor
	4.7	EQ2	
		4.7.1	EQ2 attenuation
		4.7.2	EQ2 center frequency
		4.7.3	EQ2 quality factor

	4.8	EQ3	
		4.8.1	EQ3 attenuation
		4.8.2	Center frequency
		4.8.3	EQ3 quality factor
	4.9	EQ4	
		4.9.1	EQ4 attenuation
		4.9.2	Center frequency
		4.9.3	EQ4 quality factor
	4.10	EQ5	
		4.10.1	EQ5 attenuation
		4.10.2	Center frequency
		4.10.3	EQ5 quality factor
	4.11	Highpas	s filter
	4.12	Subwoof	fer filter
	4.13	SoftStep	control
	4.14	DC offse	et detector
	4.15	Output s	tage
	4.16	Audiopro	ocessor testing
5	Ι ² C bι	us speci [.]	fication
	5.1	Interface	e protocol
	5.2	I ² C bus e	electrical characteristics
		5.2.1	Receive mode
		5.2.2	Transmission mode
		5.2.3	Reset condition
	5.3	Data byt	e specification
6	Packa	age infor	rmation
7	Revis	ion histe	ory

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin description	. 7
Table 3.	Thermal data	. 9
Table 4.	Absolute maximum ratings	. 9
Table 5.	Electrical characteristics	. 9
Table 6.	I ² C bus electrical characteristics	31
Table 7.	Subaddress (receive mode)	33
Table 8.	Main selector (0)	34
Table 9.	Output level / Highpass / EQ5 (1)	35
Table 10.	EQ2 (2)	35
Table 11.	EQ4 (3)	36
Table 12.	SoftMute / others (4)	37
Table 13.	SoftStep I (5)	38
Table 14.	SoftStep II / DC-detector (6)	39
Table 15.	Loudness (7)	40
Table 16.	Volume (8)	41
Table 17.	EQ5 (9)	42
Table 18.	EQ3 (10)	42
Table 19.	EQ1 (11)	43
Table 20.	Subwoofer / EQ3/ EQ1 (12)	44
Table 21.	Speaker attenuation (FL/FR/RL/RR/SWL/SWR) (13-18)	44
Table 22.	Testing audio processor 1 (19)	45
Table 23.	Testing audio processor 2 (20)	46
Table 24.	Testing audio processor 3 (21)	47
Table 25.	InGain & EQ2, EQ4 (22)	48
Table 26.	Document revision history	50

List of figures

Block diagram	. 6
Loudness attenuation @ f _P = 400 Hz	16
loudness center frequencies @ attn. = 15 dB	17
Loudness attenuation, f _c = 2.4 kHz.	17
EQ1 gain control @ f _c = 125 Hz, Q = 1	19
EQ1 center frequencies @ gain = 14 dB	19
EQ1 quality factors @ f _c = 125 Hz	20
EQ2 gain control @ f _c = 400 Hz, Q = 1	20
TSSOP28 mechanical data and package dimensions	49
	Block diagram. Pin connections (top view) . Loudness attenuation $\mathfrak{g}_{p} = 400 \text{ Hz}$. loudness center frequencies \mathfrak{g} attn. = 15 dB. Loudness attenuation, $f_{c} = 2.4 \text{ kHz}$. SoftMute timing. EQ1 gain control $\mathfrak{g}_{f_{c}} = 125 \text{ Hz}$, Q = 1. EQ1 center frequencies \mathfrak{g} gain = 14 dB. EQ1 quality factors $\mathfrak{g}_{f_{c}} = 125 \text{ Hz}$. EQ2 gain control $\mathfrak{g}_{f_{c}} = 125 \text{ Hz}$. EQ2 gain control $\mathfrak{g}_{f_{c}} = 400 \text{ Hz}$. EQ2 quality factors $\mathfrak{g}_{f_{c}} = 400 \text{ Hz}$. EQ3 gain control $\mathfrak{g}_{f_{c}} = 4.00 \text{ Hz}$. EQ3 quality factors $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ3 quality factors $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ4 gain control $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ4 gain control $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ4 gain control $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ4 quality factors $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ4 quality factors $\mathfrak{g}_{f_{c}} = 1.25 \text{ kHz}$. EQ5 gain control $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. EQ5 gain control $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. EQ5 quality factors $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. Highpass cut frequencies \mathfrak{g} gain = 14 dB. EQ5 quality factors $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. Highpass cut frequencies $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. Highpass cut frequencies $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. Highpass cut frequencies $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. EQ5 center frequencies $\mathfrak{g}_{f_{c}} = 12.5 \text{ kHz}$. Highpass cut frequencies $\mathfrak{g}_{f_{c}} $

1 Description and block diagram

1.1 Description

The TDA7721 is a high performance signal processor specifically designed for car radio applications.

The device includes a high performance audio processor with fully integrated audio filters and new SoftStep architecture. The digital control allows programming in a wide range of filter characteristics.

1.2 Block diagram

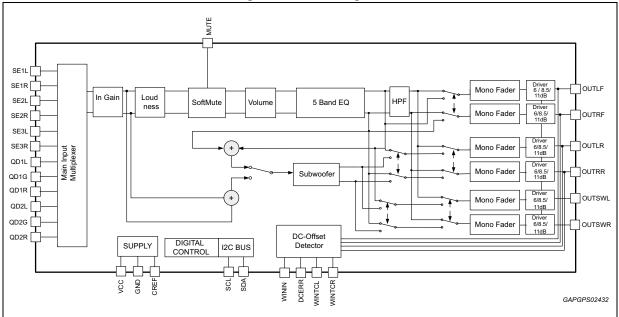
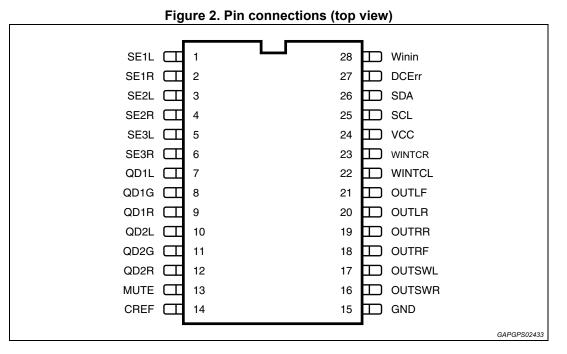



Figure 1. Block diagram

2 Pin connections and description

2.1 Pin connections

Table 2. Pin description

N#	Pin name	Description	I/O
1	SE1L	Single-end input left	I
2	SE1R	Single-end input right	I
3	SE2L	Single-end input left	I
4	SE2R	Single-end input right	I
5	SE3L	Single-end input left	I
6	SE3R	Single-end input right	I
7	QD1L	Quasi-differential stereo inputs left	I
8	QD1G	Quasi-differential stereo inputs common	I
9	QD1R	Quasi-differential stereo inputs right	I
10	QD2L	Quasi-differential stereo inputs left	I
11	QD2G	Quasi-differential stereo inputs common	I
12	QD2R	Quasi-differential stereo inputs right	I
13	MUTE	External mute pin	I
14	CREF	Reference capacitor	0
15	GND	Ground	S

N#	Pin name	Description	
16	OUTSWR	Subwoofer right output	0
17	OUTSWL	Subwoofer left output	0
18	OUTRF	Front right output	0
19	OUTRR	Rear right output	0
20	OUTLR	Rear left output	0
21	OUTLF	Front left output	0
22	WINTCL	DC offset detector filter output left channel	
23	WINTCR	DC offset detector filter output right channel	
24	VCC	Supply	S
25	SCL	I ² C bus clock	I
26	SDA	I ² C bus data	I/O
27	DCERR	DC offset detector output	0
28	WININ	DC offset detector input	I

Table 2. Pin description (continued)

3 Electrical specifications

3.1 Thermal data

Symbol	Description	Value	Unit			
R _{th-jamb}	Thermal resistance junction-to-ambient	114	°C/W			

Table 3. Thermal data

3.2 Absolute maximum ratings

Table 4. Absolute maximum	ratings
---------------------------	---------

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	13	V
V _{in_max}	Maximum voltage for signal input pins	7	V
T _{amb}	Operating ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to 150	°C

3.3 Electrical characteristics

 V_s =11.5 V; T_{amb} = 25 °C; R_L = 10 kΩ; all gains = 0 dB; f = 1 kHz; Output gain = 6 dB; Input = SE1; unless otherwise specified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
Supply	Supply							
Vs	Supply voltage	-	4.5	8.5	13	V		
ls	Supply current	-	33	40	47	mA		
Input sele	ector							
R _{in}		All single ended inputs	70	100	130	kΩ		
N/	V _{CL} Input resistance	Input gain = 0dB, when $V_{CC} \ge 5 \text{ V THD} = 1\%$	0.9	1.06	-	V _{RMS}		
V CL		Input gain = 0dB, when V_{CC} = 4.5 V THD = 1%	0.6	0.707		V _{RMS}		
S _{IN}	Input separation	-	80	100		dB		
V _{ib}	Input bias voltage	All single-ended and differential stereo inputs	2.3	2.5	2.7	V		
Differenti	al stereo inputs	- ·		•		•		
R _{in}	Input resistance	Differential	70	100	-	kΩ		

Electrical specifications

		e 5. Electrical characteristics (contin	uea)			
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
01455	Common mode	V _{CM} = 1 V _{RMS} @ 1 kHz	46	60	-	dB
CMRR	rejection ratio for main source	V _{CM} = 1 V _{RMS} @ 10 kHz	46	60	-	dB
Loudness	s control					
A _{MAX} Max attenuation		-	14	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
		f _{P1}	-	400	-	Hz
f _{Peak}	Peak frequency ⁽¹⁾	f _{P2}	-	800	-	Hz
		f _{P3}	-	2400	-	Hz
IN gain						
G _{MAX}	Max Gain ⁽²⁾	-	5	6	7	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
Ε _Τ	Tracking error	-			2	dB
V _{DC}	DC steps	Adjacent gain steps	-5	0.5	5	mV
Volume c	ontrol					
G _{MAX}	Max gain ⁽²⁾	-	21	23	25	dB
A _{MAX}	Max attenuation	-	-83	-79	-75	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
E _A	Attenuation set error	G = -20 to +23 dB	-0.75	0	+0.75	dB
ΨA		G = -20 to -79 dB	-4	0	3	dB
E _T	Tracking error	-			2	dB
		Adjacent attenuation steps	-3	0.1	3	mV
V_{DC}	DC steps	Adjacent gain step from +23dB to +15dB	-15	-	15	mV
		Adjacent gain step From +15dB to 0dB	-5	-	5	mV
Soft mute						
A _{MUTE}	Mute attenuation	-	80	100	-	dB
		T ₁	0.36	0.48	0.6	ms
Т _D	Delay time	Τ ₂	0.84	0.96	1.08	ms
U		T ₃	0.3	7.6	7.9	ms
		Τ ₄	14	15.3	16.8	ms
V_{TH_Low}	Low threshold for MUTE pin ⁽³⁾		-	-	1	V
V _{TH_High}	High threshold for MUTE pin ⁽³⁾	-	2.5	-	-	V
RPU	Internal pull-up resistor for MUTE pin ⁽³⁾	-	32	45	58	k

10/51

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
VPU	Internal pull-up Voltage for MUTE Pin ⁽³⁾	-	-	3.3	-	V
EQ1 cont	rol					
C _{RANGE}	Control range ⁽²⁾	-	14	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
		f _{C1}	-	63	-	Hz
F	Center frequency ⁽¹⁾	f _{C2}	-	80	-	Hz
F _c	Center frequency.	f _{C3}	-	100	-	Hz
		f _{C4}	-	125	-	Hz
		Q1	-	1.0	-	-
Q1	Quality factor ⁽¹⁾	Q2	-	1.25	-	-
QT		Q3	-	1.5	-	-
		Q4		2	-	-
EQ2 cont	rol					
C _{RANGE}	Control range ⁽²⁾	-	14	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
	Center frequency ⁽¹⁾	f _{C1}	-	200	-	Hz
F		f _{C2}	-	250	-	Hz
F _c		f _{C3}	-	315	-	Hz
		f _{C4}	-	400	-	Hz
		Q1	-	1.0	-	-
Q2	Quality factor ⁽¹⁾	Q2	-	1.25	-	-
QZ		Q3	-	1.5	-	-
		Q4	-	2	-	-
EQ3 cont	rol					
C _{RANGE}	Control range ⁽²⁾	-	14	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
		f _{C1}	-	630	-	Hz
F	O and an f and (1)	f _{C2}	-	800	-	Hz
Fc	Center frequency ⁽¹⁾	f _{C3}	-	1	-	kHz
		f _{C4}	-	1.25	-	kHz

Table 5. Electrical characteristics (continued)

	Tab	le 5. Electrical characteristics (co	ntinued)	1	•	·
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
	Quality factor ⁽¹⁾	Q1	-	0.75	-	-
Q3		Q2	-	1.0	-	
QU		Q3	-	1.25	-	-
		Q4	-	2.0	-	-
EQ4 cont	rol					
C _{RANGE}	Control range ⁽²⁾	-	14	15	16	dB
A _{STEP}	Step resolution ⁽¹⁾	-	0.5	1	1.5	dB
		f _{C1}	-	2	-	kHz
E	Conton from up ou (1)	f _{C2}	-	2.5	-	kHz
F _c	Center frequency ⁽¹⁾	f _{C3}	-	3.15	-	kHz
		f _{C4}	-	4	-	kHz
	Quality factor	Q1	-	0.75	-	-
		Q2	-	1.0	-	-
Q ₄		Q3	-	1.25	-	-
		Q4	-	2.0	-	-
EQ5 cont	rol		L			L
C _{RANGE}	Control range ⁽²⁾	-	14	15	16	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
	Center frequency ⁽¹⁾	f _{C1}	-	6.3	-	kHz
-		f _{C2}	-	8	-	kHz
F _c		f _{C3}	-	10	-	kHz
		f _{C4}	-	12.5	-	kHz
		Q1	-	0.75	-	-
0		Q2	-	1.0	-	-
Q ₅	Quality factor ⁽¹⁾	Q3	-	1.25	-	-
		Q4	-	2.0	-	-
Speaker a	ittenuators			•	•	
G _{MAX}	Max gain ⁽²⁾	-	14	15	16	dB
A _{MAX}	Max attenuation	-	-83	-79	-75	dB
A _{STEP}	Step resolution	-	0.5	1	1.5	dB
A _{MUTE}	Mute attenuation	-	80	90		dB
E	Attonuation act arran	G = -20 to +15 dB	-0.75	0	+0.75	dB
E _A	Attenuation set error	G = -20 to -79 dB	-4	0	3	dB

12/51

Symbol	Parameter	e 5. Electrical characteristics (continu Test condition	Min.	Тур.	Max.	Unit
-,		Adjacent attenuation steps	-5	0.1	5	mV
V_{DC}	DC Steps	Adjacent gain steps	-10	0.5	10	
HPF						
		f _{HP1}	-	63	_	Hz
		f _{HP2}	-	100	-	Hz
F _{HP}	Highpass corner frequency ⁽¹⁾	f _{HP3}	-	120	-	Hz
	requency	f _{HP4}	-	150	-	Hz
		f _{HP5}	-	180	-	Hz
Audio ou	tputs			ł		ļ
		THD = 1%; V _{CC} = 6 V option1	1.9	2.0	-	V _{RMS}
		THD = 1%; V _{CC} = 8.2 V option2	2.5	2.6	-	V _{RMS}
V _{CL}	Clipping level	THD = 1%; V _{CC} = 11.5 V option3	3.3	3.6	-	V _{RMS}
		THD = 1%; V _{CC} = 4.5 V option1	0.8	0.92	-	V _{RMS}
		THD = 1%; V _{CC} = 4.5 V option2	0.15	0.21	-	V _{RMS}
R _{OUT}	Output impedance	-	-	30	100	Ω
RL	Output load resistance	-	2	-	-	kΩ
CL	Output load capacitor	-	-	-	10	nF
		Option1: Output level = 3 V	2.85	3	3.15	V
V _{DC}	Output DC level	Option2: Output level = 4 V	3.8	4	2	V
		Option3: Output level = 5.75 V; V_{CC} > 6.5 V	5.5	5.75	6	V
		Option1:Output level/gain = 3 V/6 dB	5	6	7	dB
G _{OUT}	Output gain	Option2: Output level/gain = 4 V/8.5 dB	7.5	8.5	9.5	dB
		Option3: Output level/gain = 5.75V/11dB	10	11	12	dB
Subwoof	er lowpass					
		f _{LP1}	-	55	-	Hz
£	Lowpass corner	f _{LP2}	-	85	-	Hz
f_{LP}	frequency ⁽¹⁾	f _{LP3}	-	120	-	Hz
		f _{LP4}	-	160	-	Hz
DC offset	detection circuit	·				
		V ₁	±15	±30	±45	mV
	Zero comp window	V ₂	±20	±45	±65	mV
V _{th}	size	V ₃	±30	±60	±90	mV
		V ₄	±60	±90	±120	mV

Symbol	Parameter		est condition	, Min.	Тур.	Max.	Unit	
		-		-	11	-	μs	
-	Max rejected spike	-		-	22	-	μs	
т _{sp}	length	-		-	33	-	μs	
		-		-	44	-	μs	
I _{CHDCErr}	DCErr charge current	-		3.5	5	6.5	μA	
I _{DISDCErr}	DCErr discharge current			3.5	5	8	mA	
V _{OutH}	DCErr high voltage	-			3.3	3.5	V	
V _{OutH}	DCErr low voltage	-		0	100	300	mV	
V _{TH_Low}	Low threshold for WinIn Pin ⁽³⁾	-		-	-	1	V	
V _{TH_High}	High threshold for WinIn Pin ⁽³⁾	-		2.5	-	-	V	
RPU	Internal pull-up resistor for WinIn Pin			35	50	65	kΩ	
VPU	Internal pull-up voltage for WinIn Pin	-		3.1	3.3	3.5	V	
General								
	Output Noise	BW = 20 Hz- 20 kHz	Output level/gain = 3 V/6 dB	-	20	25	μV	
			all gain = 0 dB,	Output level/gain = 4 V/8.5 dB	-	27	30	μV
		HPF = OFF, Input = SE/QD	Output level/gain = 5.75 V/11 dB	-	36	40	μV	
e _{NO}			BW = 20 Hz-	Output level/gain = 3 V/6 dB	-	6.6	10	μV
		20kHz A-Weighted,	Output level/gain = 4 V /8.5 dB	-	8	12	μV	
		Output muted	Output level/gain =5.75V/11dB	-	10	15	μV	
	Signal to noise ratio	all gain = 0dB, A-weighted;	Output level/gain = 3 V/6 dB	98	100	-	dB	
S/N			Output level/gain = 4 V/8.5 dB	98	100	-	dB	
			Output level/gain=5.75V/11dB	98	100	-	dB	

Table 5. Electrical characteristics (continued)
---------------------------------------	------------

Symbol	Parameter	Te	est condition	Min.	Тур.	Max.	Unit
D		VIN=0.5V _{RMS;} all gain = 0dB,	Output level/gain=3V/6dB(5V)	-	0.01	0.1	%
			Output level/gain=4V/8.5dB(6V)	-	0.01	0.1	%
		HPF=OFF	Output level/gain=5.75V/11dB(8. 5V)	-	0.01	0.1	%
S _C	Channel separation left/right	-		75	90	-	dB

Table 5. Electrical characteristics (continued)

1. Value guaranteed by measuring correlated parameter.

2. Measure performed in DC.

3. Verified only in characterization.

Description of audioprocessor 4

4.1 Input stage

Two quasi-differential stereo input and three single-ended inputs are available.

4.1.1 Single-ended stereo input (SE1, SE2, SE3)

The input-impedance at each input is $100 \text{ k}\Omega$.

4.1.2 Quasi-differential stereo Input (QD1,QD2)

The QD input is implemented as a buffered guasi-differential stereo stage with 100 k Ω inputimpedance at each input. There is 0 dB attenuation at QD input stage.

4.1.3 Fast charge

Each differential input pin features a "fast-charge" switch allowing to quickly charge any external large coupling capacitors upon power-on of the device. When the device is powered-on, the "fast-charge" switches are automatically turned on, for normal operations these switches need to be released by any programming of byte 0. After that, the "fastcharge" switches can be turned on/off by setting "fast charge = on/off".

4.2 Input gain

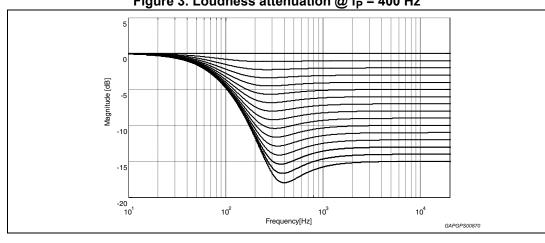
A 0~6dB input gain is selectable to compensate the different input signal.

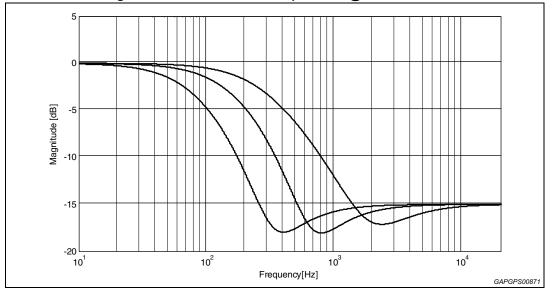
4.3 Loudness

There are four parameters programmable in the loudness stage.

4.3.1 Loudness attenuation

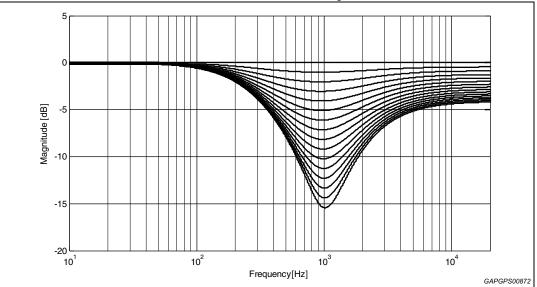
Figure 3 shows the attenuation as a function of frequency at f_P = 400 Hz




Figure 3. Loudness attenuation @ f_P = 400 Hz

16/51

4.3.2 Peak frequency


Figure 4 shows the four possible peak-frequencies at 400, 800 and 2400 Hz

4.3.3 High frequency boost

Figure 5 shows the different loudness shapes in low & high frequency boost.

4.3.4 Flat mode

In flat mode the loudness stage works as a 0 dB to -15 dB attenuator.

4.4 SoftMute

The digitally controlled SoftMute stage allows muting/demuting the signal with a I^2C bus programmable slope. The mute process can be activated either by the SoftMute pin or by the I^2C bus. This slope is realized in a special S-shaped curve to mute slow in the critical regions (see *Figure 6*).

For timing purposes the Bit0 of the I^2C bus output register is set to 1 from the start of muting until the end of demuting.

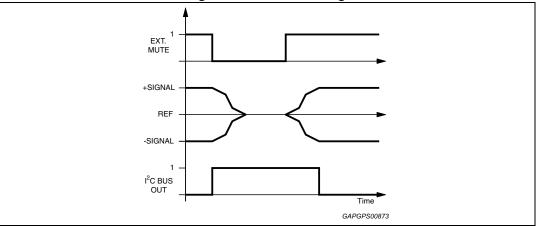
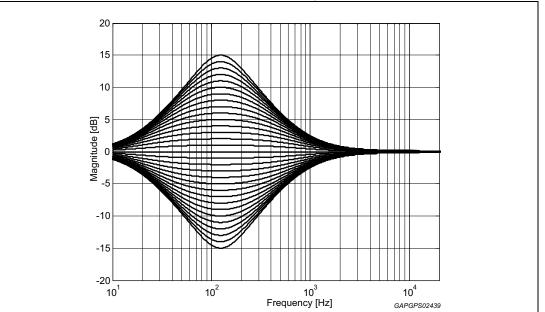


Figure 6. SoftMute timing

Note: Please notice that a started Mute-action is always terminated and could not be interrupted by a change of the mute -signal.

4.5 Volume

When the volume-level is changed audible clicks could appear at the output. The root cause of those clicks could be either a DC-Offset before the volume-stage or the sudden change in the envelope of the audio signal. With the SoftStep-feature both kinds of clicks could be reduced to a minimum and are no more audible. The blend-time from one step to the next is programmable as 5 ms or 10 ms. The SoftStep control is described in detail in Section 4.13.



4.6 EQ1

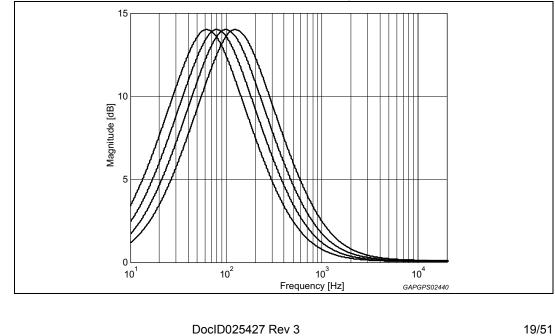
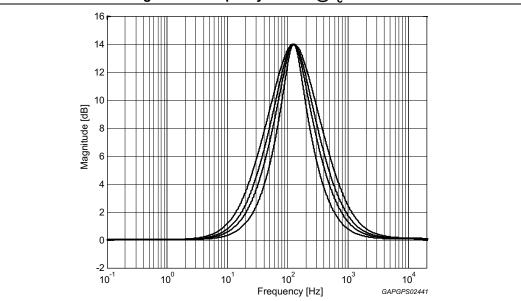
There are three parameters programmable in the EQ1 stage.

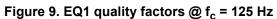
4.6.1 EQ1 attenuation

Figure 7 shows the attenuation as a function of frequency at 125 Hz.

4.6.2 Center frequency

Figure 8 shows the four possible center frequencies 63 Hz/ 80 Hz / 100 Hz/ 125 Hz.

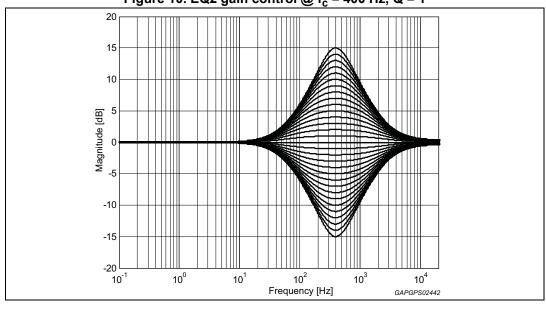




Figure 8. EQ1 center frequencies @ gain = 14 dB

57

4.6.3 EQ1 quality factor

Figure 9 shows the four possible quality factors (1.0/1.25/1.5/2) when f_c is 125 Hz.

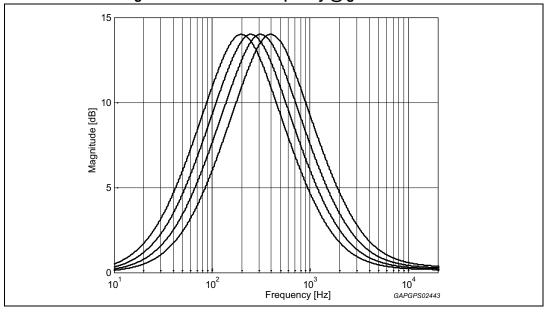


4.7 EQ2

There are three parameters programmable in the EQ2 stage.

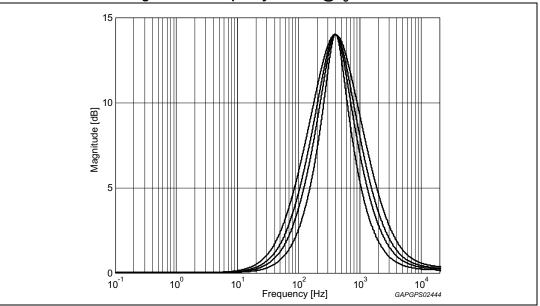
4.7.1 EQ2 attenuation

Figure 10 shows the attenuation as a function of frequency at 400 Hz when Q = 1.



20/51

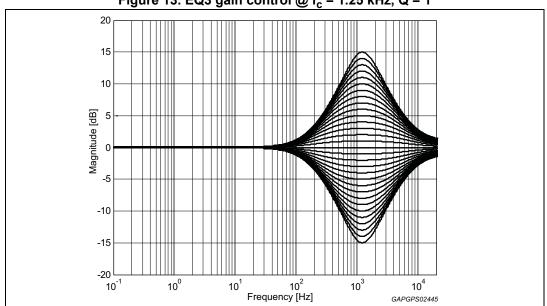
4.7.2 EQ2 center frequency


Figure 11 shows the four possible center frequencies 200/250/315/400 Hz.

4.7.3 EQ2 quality factor

Figure 12 shows the four possible quality factors (1.0/1.25/1.5/2) when f_c is 400 Hz.

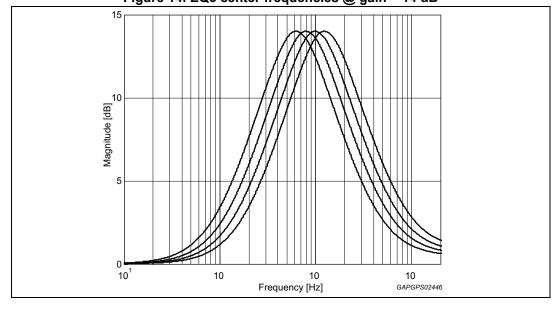
Figure 12. EQ2 quality factors @ f_c = 400 Hz



4.8 EQ3

There are three parameters programmable in the EQ3 stage.

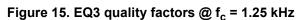
4.8.1 **EQ3** attenuation


Figure 13 shows the attenuation as a function of frequency at a center frequency of 1.25kHz.

4.8.2 **Center frequency**

Figure 14 shows the four possible center frequencies 630 Hz, 800 Hz, 1 kHz, 1.25 kHz.

Figure 14. EQ3 center frequencies @ gain = 14 dB


22/51

4.8.3 EQ3 quality factor

Figure 15 shows the four possible quality factors (0.75/1.0/1.25/2.0) when f_c is 1.25 kHz.

4.9 EQ4

There are three parameters programmable in the EQ4 stage.

4.9.1 EQ4 attenuation

Figure 16 shows the attenuation as a function of frequency at a center frequency of 4 kHz.

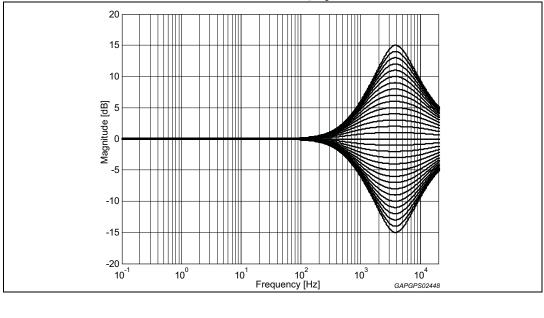
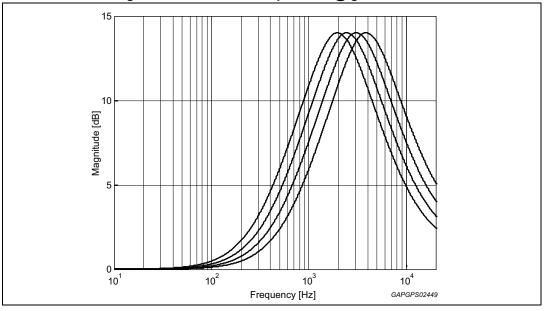
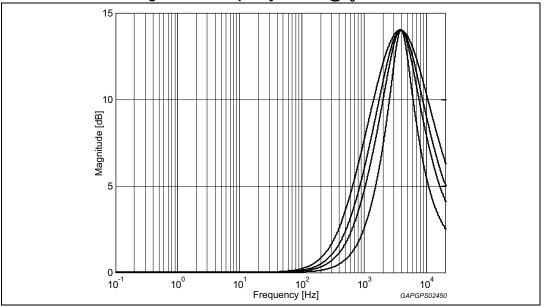
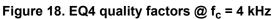



Figure 16. EQ4 gain control @ $f_c = 4 \text{ kHz}$, Q = 1

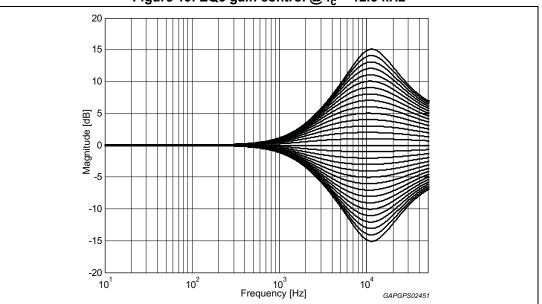
4.9.2 Center frequency


Figure 17 shows the four possible center frequencies 2/2.5/3.15/4kHz.



4.9.3 EQ4 quality factor

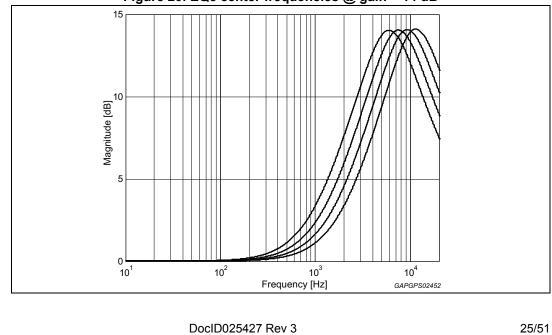
Figure 18 shows the four possible quality factors(0.75/1.0/1.25/2) when f_c is 4 kHz.



4.10 EQ5

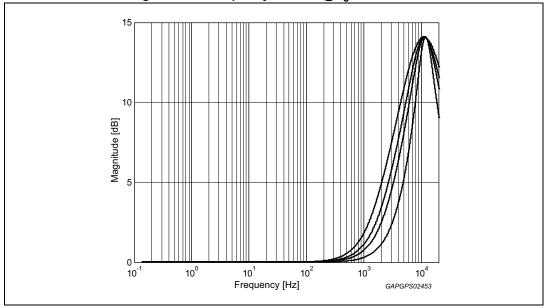
There are three parameters programmable in the EQ5 stage.

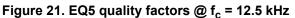
4.10.1 **EQ5** attenuation


Figure 19 shows the attenuation as a function of frequency at a center frequency of 12.5 kHz.

4.10.2 **Center frequency**

Figure 20 shows the four possible center frequencies 6.3/8/10/12.5 kHz.




Figure 20. EQ5 center frequencies @ gain = 14 dB

57

4.10.3 EQ5 quality factor

Figure 21 shows the four possible quality factors(0.75/1.0/1.25/2) when f_c is12.5 kHz.

4.11 Highpass filter

The 2^{nd} order high pass filter has the programmable cut-off frequencies (63/100/120/150/180Hz).

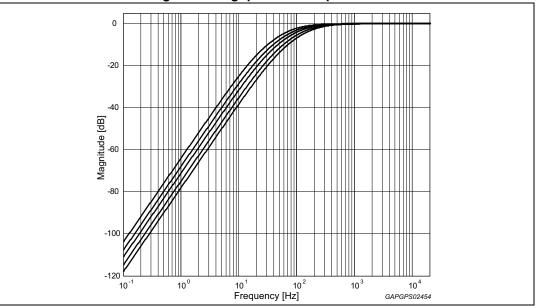


Figure 22. Highpass cut frequencies

26/51

4.12 Subwoofer filter

The subwoofer lowpass filter has Butterworth characteristics with programmable cut-off frequency (55 Hz / 85 Hz/ 120 Hz/ 160 Hz). The output phase can be selected between 0 deg and 180 deg. The input of subwoofer takes signal from EQ filter output or output of input MUX.

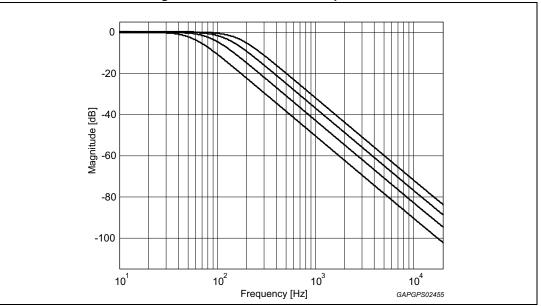


Figure 23. Subwoofer cut frequencies

4.13 SoftStep control

In this device, the SoftStep function is available for volume, speaker, loudness, EQ block. With SoftStep function, the audible noise of DC offset or the sudden change of signal can be avoided when adjusting gain setting of the block.

For each block, the SoftStep function is controlled by SoftStep on/off control bit in the control table. The SoftStep transient time selection (5 ms or 10 ms) is common for all blocks and it is controlled by SoftStep time control bit. The SoftStep operation of all blocks has a common centralized control. In this case, a new SoftStep operation will not be started before the completion of previous SoftStep.

There are two different modes to activate the SoftStep operation. The SoftStep operation can be started right after l^2C data sending, or the SoftStep can be activated in parallel after data sending of several different blocks. The two modes are controlled by the 'act bit' (it is normally bit7 of the byte) of each byte. When act bit is '0', which means action, the SoftStep is activated right after the date byte is sent. When the act bit is '1', which means wait, the block goes to wait for SoftStep status. In this case, the block will wait for some other block to activate the operation. The SoftStep operation of all blocks in wait status will be done together with the block which activate the SoftStep. With this mode, all specific blocks can do the SoftStep in parallel. This avoids waiting when the SoftStep is operated one by one. Be noticed that if a block is set to 'gain1' with act bit = 1, later this block is set to 'gain2' with act bit = 0, in this case the block will do a SoftStep from present gain to 'gain2' but not from present gain to 'gain1' then to 'gain2'.

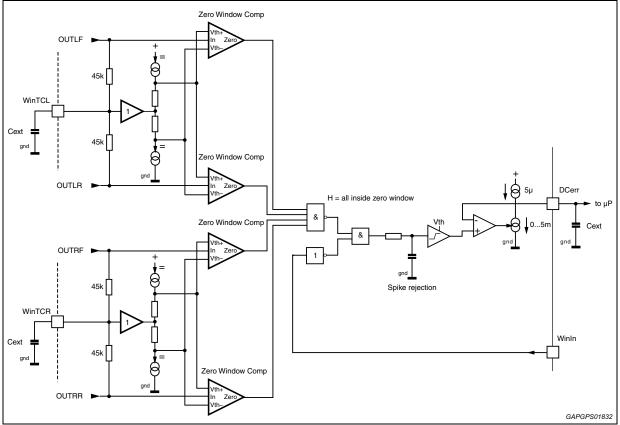
Chip Addr	Sub Addr	0xxxxxxx	
			← Soft-step start here

ddr Sub Addr 1xxxxxx 1xxxxxx 0xxxxxx

Chip Addr	Sub Addr	1xxxxxxx	1xxxxxxx	 0xxxxxxx	1

|← SoftStep
start here for all

4.14 DC offset detector


Using the DC offset detection circuit (*Figure 24*) an offset voltage difference between the audio power amplifier and the APR's Front and Rear outputs can be detected, preventing serious damage to the loudspeakers. The circuit compares whether the signal crosses the zero level inside the audio power at the same time as in the speaker cell. The output of the zero-window-comparator of the power amplifier must be connected with the WinIn-input of the APR. The WinIn-input has a 50 k Ω internal pull-up resistor connected to 3.3 V. It is recommended to drive this pin with open-collector outputs only.

To compensate for errors at low frequencies the WinTC-pin is implemented, with external capacitors introducing the same delay $\tau = 22.5 \text{ k}\Omega * \text{C}_{\text{ext}}$ as the AC-coupling introduced between the APR and the power amplifier. For the zero window comparators, the time constant for spike rejection as well as the threshold are programmable.

A low-active DC-offset error signal appears at the DCErr output if the next conditions are both true:

- a) Front and rear outputs are inside zero crossing windows.
- b) The Input voltage V_{winin} is logic low whenever at least one output of the power amplifier is outside the zero crossing windows.

After power-on, the external attached capacitor is rapidly charged (fast-charge) to overcome a false indication.

Figure 24. DC offset detection circuit (simplified)

4.15 Output stage

The output gain and output DC voltage are configurable by I^2C to fit different application. The configuration is as follows:

- AC Gain = 6 dB, DC level = 3 V
- AC Gain = 8.5 dB, DC level = 4 V
- AC Gain = 11 dB, DC level = 5.75 V

4.16 Audioprocessor testing

In the test mode, which can be activated by setting bit D7 of the I²C subaddress byte and bit D0 of the testing audioprocessor byte, several internal signals are available at the QD2G pin. In this mode, the input resistance of 100 k Ω is disconnected from the pin. Internal signals available for testing are listed in the data-byte specification.

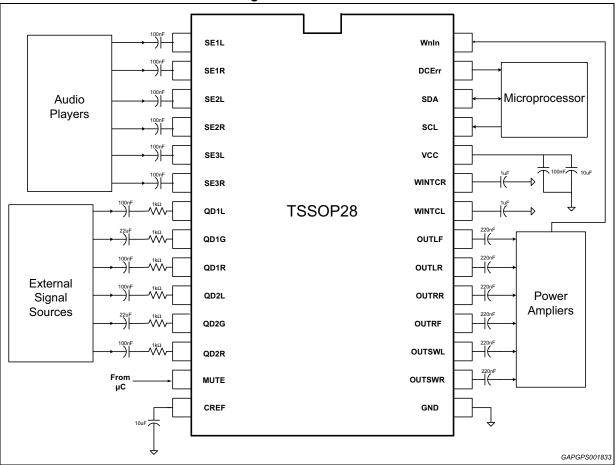
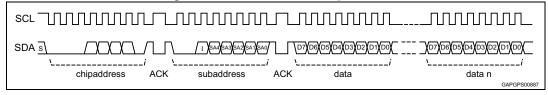


Figure 25. Test circuit


5 I²C bus specification

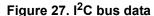
5.1 Interface protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB determines read/write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)
- the max. clock speed is 400kbits/s
- 3.3 V logic compatible

Figure 26. I²C bus interface protocol

S = Start


ACK = Acknowledge

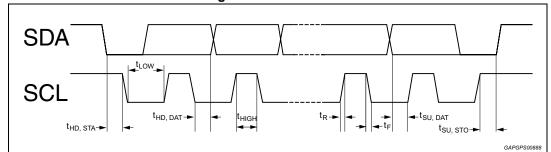
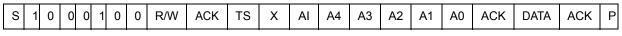

5.2 I²C bus electrical characteristics

Table 6. I²C bus electrical characteristics


Symbol	Parameter	Min	Мах	Unit
f _{SCL}	SCL clock frequency	-	400	kHz
V _{IH}	High level input voltage	2.4	-	V
V _{IL}	Low level input voltage	-	0.8	V
t _{HD,STA}	Hold time for START	0.6	-	μs
t _{su,sто}	Setup time for STOP	0.6	-	μs
t _{LOW}	Low period for SCL clock	1.3	-	μs
t _{HIGH}	High period for SCL clock	0.6	-	μs
t _F	Fall time for SCL/SDA	-	300	ns
t _R	Rise time for SCL/SDA	-	300	ns
t _{HD,DAT}	Data hold time	0	-	ns
t _{SU,DAT}	Data setup time	100	-	ns

5.2.1 Receive mode

S = Start

 $R/W = "0" \rightarrow Receive mode (Chip can be programmed by \mu P)$

"1" \rightarrow Transmission mode (Data could be received by $\mu P)$

ACK = Acknowledge

P = Stop

TS = Testing mode

AI = Auto increment

5.2.2 Transmission mode

	S	1	0	0	0	1	0	0	R/W	ACK	Х	Х	Х	Х	Х	Х	ΒZ	SM	ACK	Р
--	---	---	---	---	---	---	---	---	-----	-----	---	---	---	---	---	---	----	----	-----	---

SM = SoftMute activated for main channel

BZ = SoftStep busy ('0' = Busy)

X = Not used

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chip address.

5.2.3 Reset condition

A power-on-reset is invoked if the supply voltage is below than 3.5 V. After that the registers are initialized to the default data written in following tables.

MSB				LSB				
12	11	10	A4	A3	A2	A1	A0	Function
0 1	-	-	-	-	-	-	-	Testing mode Off On
-	х	-	-	-	-	-	-	Not used
-	-	0 1	-	-	-	-	-	Auto increment mode Off On
-	-	-	0	0	0	0	0	Main selector/others
-	-	-	0	0	0	0	1	Output level / Highpass / EQ5
-	-	-	0	0	0	1	0	EQ2
-	-	-	0	0	0	1	1	EQ4
-	-	-	0	0	1	0	0	Soft-mute / others
-	-	-	0	0	1	0	1	SoftStep I
-	-	-	0	0	1	1	0	SoftStep II / DC-detector
-	-	-	0	0	1	1	1	Loudness
-	-	-	0	1	0	0	0	Volume / output gain
-	-	-	0	1	0	0	1	EQ5
-	-	-	0	1	0	1	0	EQ3
-	-	-	0	1	0	1	1	EQ1
-	-	-	0	1	1	0	0	Subwoofer / EQ3 / EQ1
-	-	-	0	1	1	0	1	Speaker attenuator left front
-	-	-	0	1	1	1	0	Speaker attenuator right front
-	-	-	0	1	1	1	1	Speaker attenuator left rear
-	-	-	1	0	0	0	0	Speaker attenuator right rear
-	-	-	1	0	0	0	1	Subwoofer attenuator left
-	-	-	1	0	0	1	0	Subwoofer attenuator right
-	-	-	1	0	0	1	1	Testing audio processor 1
-	-	-	1	0	1	0	0	Testing audio processor 2
-	-	-	1	0	1	0	1	Testing audio processor 3
-	-	-	1	0	1	1	0	InGain/EQ2/EQ4

Table 7. Subaddre	ess (receive mode)

5.3 Data byte specification

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Main source selector
					0	0	0	SE1
					0	0	1	SE3
					0	1	0	<u>QD1</u>
-	-	-	-	-	0	1	1	QD2
					1	0	0	SE2
					1	0	1	Mute
					1	1	0	Mute
					1	1	1	Mute
								EQ2 SoftStep
-	-	-	-	0	-	-	-	On
				1				Off
								EQ4 SoftStep
-	-	-	0	-	-	-	-	On
			1					Off
								Subwoofer flat
-	-	0	-	-	-	-	-	Off
		1						<u>On</u>
								Subwoofer input source
-	0	-	-	-	-	-	-	Input MUX
	1							<u>EQ output</u>
								Rear input source
0	-	-	-	-	-	-	-	Subwoofer output
1								EQ /HPF (depends on Byte1D4)

Table 8. Main selector (0)

MSB					-	_	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Output DC level
						0	0	3 V (AC Gain = 6dB)
-	-	-	-	-	-	0	1	4 V (AC Gain = 8.5dB)
						1	х	<u>5.75 V (AC Gain = 11dB)</u>
								Highpass enable
-	-	-	0	-	-	-	-	Off (bypass)
			1					<u>On</u>
								Highpass frequency
		0		0	0			100Hz
		0		0	1			120Hz
-	-	0	-	1	0	-	-	150Hz
		0		1	1			180Hz
		1		х	х			<u>63Hz</u>
								EQ5 quality factor
0	0							0.75
0	1	-	-	-	-	-	-	1.0
1	0							1.25
1	1							2

Table 9.	Output	level /	Highpass	/ EQ5	(1)
	Output	10101/	ingiipuss		(')

Table 10. EQ2 (2)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/Attenuation
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1dB
-	-	-	0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	<u>+1dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
								EQ2 center frequency
	0	0						200Hz
-	0	1	-	-	-	-	-	250Hz
	1	0						315Hz
	1	1						<u>400Hz</u>
								Soft step action
0	-	-	-	-	-	-	-	act
1								wait

MSB						11. LQ4	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1dB
-	-	-	0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	<u>+1dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
								EQ4 center frequency
		0						2kHz
-	-	1	-	-	-	-	-	2.5kHz
		0						3.15kHz
		1						<u>4kHz</u>
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

Table 11. EQ4 (3)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	SoftMute On Off
-	-	-	-	-	-	0 1	-	Pin influence for mute Pin and IIC IIC
-	-	-	-	0 0 1 1	0 1 0 1	-	-	SoftMute Time 0.48ms 0.96ms 7.68ms <u>15.36ms</u>
-	-	0 0 1 1	0 1 0 1	-	-	-	_	Speaker-Ls/Rs input selection (OUTSWL & OUTSWR) High Pass filter Subwoofer filter High Pass filter EQ filter
-	0 1	-	-	-	-	-	-	Fast charge On <u>Off</u>
0 1	-	-	-	-	-	-	-	Anti-alias filter On <u>Off (bypass)</u>

Table 12. SoftMute / others (4)

MSB						3011318	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Loudness SoftStep On <u>Off</u>
-	-	-	-	-	-	0 1	-	Volume SoftStep On <u>Off</u>
-	-	-	-	-	0 1	-	-	EQ5 SoftStep On <u>Off</u>
-	-	-	-	0 1	-	-	-	EQ3 SoftStep On <u>Off</u>
-	-	-	0 1		-	-	-	EQ1 SoftStep On <u>Off</u>
-	-	0 1	-	-	-	-	-	Speaker LF SoftStep On <u>Off</u>
-	0 1	-	-	-	-	-	-	Speaker RF SoftStep On <u>Off</u>
0 1	-	-	-	_	-	-	-	Speaker LR SoftStep On <u>Off</u>

Table 13. SoftStep I (5)

MSB						~	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Speaker RR SoftStep
-	-	-	-	-	-	-	0	On
							1	Off
								Subwoofer left SoftStep
-	-	-	-	-	-	0	-	On
						1		Off
								Subwoofer right SoftStep
-	-	-	-	-	0	-	-	On
					1			Off
								SoftStep time
-	-	-	-	0	-	-	-	5 ms
				1				<u>10 ms</u>
								Zero-comparator window size
		0	0					± 90 mV
-	-	0	1	-	-	-	-	\pm 60 mV
		1	0					± 45 mV
		1	1					<u>± 30 mV</u>
								Spike rejection time constant
0	0							11µs
0	1	-	-	-	-	-	-	22 µs
1	0							33 µs
1	1							<u>44 </u> µs

Table 14. SoftStep II / DC-detector (6)

MSB					able 15.		LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Attenuation
				0	0	0	0	0dB
				0	0	0	1	-1dB
-	-	-	-	:	:	:	:	:
				1	1	1	0	- <u>14dB</u>
				1	1	1	1	-15dB
								Center frequency
		0	0					Flat
-	-	0	1	-	-	-	-	400Hz
		1	0					800Hz
		1	1					<u>2400Hz</u>
								High boost
-	0	-	-	-	-	-	-	On
	1							Off
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

Table 15. Loudness (7)

MSB						5. VOIUII	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/attenuation
	0	0	0	0	0	0	0	+0dB
	0	0	0	0	0	0	1	+1dB
	0	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15dB
	0	0	1	0	0	0	0	+16dB
	0	:	:	:	:	:	:	:
	0	0	1	0	1	1	1	+23dB
	0	0	1	1	0	0	0	Not used
	0	:	:	:	:	:	:	:
	0	0	1	1	1	1	1	Not used
	0	1	0	0	0	0	0	-0dB
-	0	:	:	:	:	:	:	:
	0	1	0	1	1	1	1	-15dB
	0	:	:	:	:	:	:	:
	0	1	1	1	1	1	0	- <u>30dB</u>
	0	1	1	1	1	1	1	-31dB
	1	0	0	0	0	0	0	-32dB
	1	0	0	0	0	0	1	-33dB
	1	:	:	:	:	:	:	:
	1	0	1	1	1	1	1	-63dB
	1	1	0	0	0	0	0	-64dB
	:	:	:	:	:	:	:	:
	1	1	0	1	1	1	1	-79dB
	1	1	1	x	х	x	x	Mute
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

Table 16. Volume (8)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1dB
-	-	-	0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	<u>+1dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
								EQ5 center frequency
	0	0						6.3kHz
-	0	1	-	-	-	-	-	8kHz
	1	0						10.0kHz
	1	1						<u>12.5kHz</u>
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

Table 17. EQ5 (9)

Table 18. EQ3 (10)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1dB
-	-	-	0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	<u>+1dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
								EQ3 Quality factor
	0	0						0.75
-	0	1	-	-	-	-	-	1.0
	1	0						1.25
	1	1						2
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	:
			0	1	1	1	0	-1dB
-	-		0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	<u>+1dB</u>
			:	:	:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
								EQ1 quality factor
	0	0						1.0
-	0	1	-	-	-	-	-	1.25
	1	0						1.5
	1	1						2
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

Table 19. EQ1 (11)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	0 0 1 1	0 1 0 1	Subwoofer cut-off frequency 55Hz 85Hz <u>120Hz</u> 160Hz
-	-	-	-	-	0 1	-	-	Subwoofer output phase 180 deg <u>0 deg</u>
-	-	-	0 0 1 1	0 1 0 1	-	-	-	EQ3 Center Frequency 630Hz 800Hz 1000Hz <u>1250Hz</u>
-	0 0 1 1	0 1 0 1	-	-	-	-	-	EQ1 Center Frequency 63Hz 80Hz 100Hz <u>125Hz</u>
0 1	-	-	-	-	-	-	-	EQ Flat mode on off

Table 20	. Subwoofer	/ EQ3/	EQ1 (12)	
----------	-------------	--------	----------	--

Table 21. Speaker attenuation (FL/FR/R	L/RR/SWL/SWR) (13-18)
Table 211 opeaner attendation (1 2/11/11	

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/attenuation
	0	0	0	0	0	0	0	+0dB
	0	0	0	0	0	0	1	+1dB
	:	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15dB
-	0	0	1	0	0	0	0	-0dB
	0	0	1	0	0	0	1	-1dB
	:	:	:	:	:	:	:	:
	1	0	1	1	1	1	0	-78dB
	1	0	1	1	1	1	1	-79dB
	1	1	х	х	х	х	x	mute
								SoftStep action
0	-	-	-	-	-	-	-	act
1								wait

DocID025427 Rev 3

MSB	LSB							Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Audio processor testing mode
-	-	-	-	-	-	-	0	Off
							1	On
								Test multiplexer at QD2G ⁽¹⁾
			0	0	0	0		SSCLK
			0	0	0	1		SMCLK
			0	0	1	0		Clk200
-	-	-	0	0	1	1	-	SDCLK
			0	1	0	0		REQ_Test
			0	1	0	1		VDDa
			0	1	1	0		VDDd
			0	1	1	1		V2V
								Test multiplexer DCO ⁽¹⁾
			1	0	0	0		Vref
			1	0	0	1		Vref
			1	0	1	0		Vref
-	-	-	1	0	1	1	-	Vref
			1	1	0	0		Vthp ref
			1	1	0	1		Vthn ref
			1	1	1	0		IntZeroErr
			1	1	1	1		Vref
								Clock fast mode ⁽²⁾
-	-	0	-	-	-	-	-	On
		1						Off
								Clock source ⁽²⁾
-	0	-	-	-	-	-	-	External (MUTE Pin)
	1							Internal (200kHz)
								Attenuators gain clock control ⁽²⁾
0	-	-	-	-	-	-	-	On
1								Off

Table 22. Testing audio processor 1 (19)

1. The control bit needs both $\mathsf{I}^2\mathsf{C}$ test mode on & sub-address test mode on.

2. The control bit does not depend on test mode.

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Test architecture ⁽¹⁾
-	-	-	-	-	-	-	0	Normal
							1	Split
								Oscillator clock ⁽²⁾
-	-	-	-	-	-	0	-	400kHz
						1		<u>800kHz</u>
								SoftStep curve ⁽²⁾
-	-	-	-	-	0	-	-	S-Curve
					1			Linear curve
								Manual set busy signal ⁽¹⁾
			0	0				Auto
-	-	-	0	1	-	-	-	Auto
			1	0				0
			1	1				1
								Request for clk generator ⁽¹⁾
			0	0				Allow
-	-	-	0	1	-	-	-	Allow
			1	0				Stopped
			1	1				Stopped
								No DCO spike rejection ⁽²⁾
-	-	0	-	-	-	-	-	On
		1						Off
-	х	-	-	-	-	-	-	Not used
								EQ flat function
0	-	-	-	-	-	-	-	Disable
1								Enable

Table 23. To	esting au	udio pro	cessor 2	(20)
--------------	-----------	----------	----------	------

1. The control bit needs sub-address test mode on.

2. The control bit does not depend on test mode.

MSB						p-	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Enable Clock for FL/FR/RL/RR/SWL/SWR
-	-	-	-	-	-	-	0	On
							1	Off
								Enable clock for InGain&EQ1
-	-	-	-	-	-	0	-	On
						1		Off
								Enable clock for volume&EQ2
-	-	-	-	-	0	-	-	On
					1			Off
								Enable clock for EQ3
-	-	-	-	0	-	-	-	On
				1				Off
								Enable clock for EQ4
-	-	-	0	-	-	-	-	On
			1					Off
								Enable clock for EQ5
-	-	0	-	-	-	-	-	On
		1						Off
								Enable test for InGain
-	0	-	-	-	-	-	-	On
	1							Off
х		-	-	-	-	-	-	Not used

Table 24. Testing audio processor 3 (21)

MSB					25. 1168		LSB		
D7	D6	D5	D4	D3	D2	D1	D0	- Function	
_	-	-	-	0 0 : 0 0 1	0 0 1 1 x	0 1 : 1 1 x	0 0 : 0 1 x	InGain +0dB +1dB : +6dB Not used Not used	
-	-	0 0 1 1	0 1 0 1	-	-	-	-	EQ2 quality factor 1.0 1.25 1.5 <u>2.0</u>	
0 0 1 1	0 1 0 1	-	-	-	-	-	-	EQ4 quality factor 0.75 1.0 1.25 <u>2</u>	

Table 25. InGain & EQ2, EQ4 (22)

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

 $ECOPACK^{
end{tabular}}$ is an ST trademark.

DIM.	mm		inch			OUTLINE AND	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MECHANICAL DAT A
А			1.200			0.047	
A1	0.050		0.150	0.002		0.006	
A2	0.800	1.000	1.050	0.031	0.039	0.041	
b	0.190		0.300	0.007		0.012	
С	0.090		0.200	0.004		0.008	- 166 <u>666666</u>
D (1)	9.600	9.700	9.800	0.378	0.382	0.386	SSEESESSESSE
Е	6.200	6.400	6.600	0.244	0.252	0.260	
E1 (1)	4.300	4.400	4.500	0.170	0.173	0.177	
е		0.650			0.026		Illunn
L	0.450	0.600	0.750	0.018	0.024	0.030	
L1		1.000			0.039		
k		0		8° (max	.)		TOCODOS
aaa			0.100			0.004	TSSOP28 Thin Shrink Small Outline Package
_							
		D C		I		<u>b</u>	

7 Revision history

Date	Revision	Changes
24-Oct-2013	1	Initial release.
20-Dec-2013	2	Updated <i>Figure 1: Block diagram on page 6</i> ; Modified <i>Table 5: Electrical characteristics</i> on page 11 and 12 (only C _{RANGE} parameter name).
08-Jan-2014	3	Updated Features on page 1.

Table 26. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025427 Rev 3