ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14557B

1-to-64 Bit Variable Length Shift Register

The MC14557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled Length Control inputs (L1, L2, L4, L8, L16, and L32) plus one. Serial data may be selected from the A or B data inputs with the A / B select input. This feature is useful for recirculation purposes. A Clock Enable (CE) input is provided to allow gating of the clock or negative edge clocking capability.

The device can be effectively used for variable digital delay lines or simply to implement odd length shift registers.

- 1-64 Bit Programmable Length
- Q and $\overline{\mathrm{Q}}$ Serial Buffered Outputs
- Asynchronous Master Reset
- All Inputs Buffered
- No Limit On Clock Rise and Fall Times
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or one Low-power Schottky TTL Load Over the Rated Temperature Range
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{Ss})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 2)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.
2. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAMS

PDIP-16
P SUFFIX
CASE 648

SO-16 WB DW SUFFIX CASE 751G

SOEIAJ-16 F SUFFIX CASE 966

14557B AWLYYWWG
पसपषपष्य

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
$\mathrm{G} \quad=\mathrm{Pb}$-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MC14557B

Figure 1. Logic Diagram

L2	$1 \bullet$	16	$7 \mathrm{~V}_{\mathrm{DD}}$
L1	2	15	[4
RESET [3	14	[L8
CLOCK	4	13	\square L16
$\overline{C E}$	5	12	[32
B	6	11	$\square \bar{Q}$
A	7	10	Q
$\mathrm{V}_{\text {SS }}$	8	9	A/B SEL

Figure 2. Pin Assignment

Figure 3. Block Diagram

TRUTH TABLE

Inputs				
Output				
Rst	A/B	Clock	CE	Q
0	0	\digamma	0	B
0	1	\digamma	0	A
0	0	1	乙	B
0	1	1	乙	A
1	X	X	X	0

Q is the output of the first selected shift register stage.
X = Don't Care

LENGTH SELECT TRUTH TABLE

L32	L16	L8	L4	L2	L1	Register Length
0	0	0	0	0	0	1 Bit
0	0	0	0	0	1	2 Bits
0	0	0	0	1	0	3 Bits
0	0	0	0	1	1	4 Bits
0	0	0	1	0	0	5 Bits
0	0	0	1	0	1	6 Bits
\bullet						
\bullet						
\bullet						
1	0	0	0	0	0	33 Bits
1	0	0	0	0	1	34 Bits
\bullet						
\bullet						
\bullet						
1	1	1	1	0	0	61 Bits
1	1	1	1	0	1	62 Bits
1	1	1	1	1	0	63 Bits
1	1	1	1	1	1	64 Bits

NOTE: Length equals the sum of the binary length control subscripts plus one.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Symbol	Characteristic	V_{DD}Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 3)	Max	Min	Max	
V_{OL}	Output Voltage $V_{\text {in }}=V_{D D} \text { or } 0$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
V_{OH}	$V_{\text {in }}=0$ or $V_{D D}$ "1" Level	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	Vdc
VIL	 Input Voltage "0" Level $\left(V_{O}=4.5\right.$ or 0.5 Vdc$)$ $\left(V_{O}=9.0\right.$ or 1.0 Vdc$)$ $\left(V_{O}=13.5\right.$ or 1.5 Vdc$)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
V_{IH}	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$		Vdc
IOH	Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ 	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	- - -	mAdc
IoL	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & (\mathrm{VOL}=0.5 \mathrm{Vdc}) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$ Sink	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	
$\mathrm{l}_{\text {in }}$	Input Current	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
$\mathrm{C}_{\text {in }}$	Input Capacitance $\left(V_{\text {in }}=0\right)$	-	-	-	-	5.0	7.5	-	-	pF
I_{DD}	Quiescent Current (Per Package)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.010 \\ & 0.020 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
${ }_{\text {IT }}$	Total Supply Current (Notes 4, 5) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.75 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.50 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(5.25 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
5. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.001$.

SWITCHING CHARACTERISTICS (Note 6) $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	V_{DD}	Min	Typ (Note 7)	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH} \mathrm{~L}} \end{aligned}$	Rise and Fall Time, Q or $\overline{\mathrm{Q}}$ Output $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{array}{r} 200 \\ 100 \\ 80 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Clock or $\overline{C E}$ to Q or $\overline{\mathrm{Q}}$ $t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+215 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PL}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$ $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+65 \mathrm{~ns}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 130 \\ 90 \end{gathered}$	$\begin{aligned} & 600 \\ & 260 \\ & 180 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{tLH}},$ $t_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay, Reset to } \mathrm{Q} \text { or } \overline{\mathrm{Q}} \\ & \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+215 \mathrm{~ns} \\ & t_{\text {PLL }}, t_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+70 \mathrm{~ns} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \\ \hline \end{gathered}$	-	$\begin{gathered} 300 \\ 130 \\ 95 \\ \hline \end{gathered}$	$\begin{array}{r} 600 \\ 260 \\ 190 \\ \hline \end{array}$	ns
$\mathrm{t}_{\mathrm{WH}}(\mathrm{cl})$	Pulse Width, Clock	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & 95 \\ & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	ns
t_{WH} (rst)	Pulse Width, Reset	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 300 \\ & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
f_{cl}	Clock Frequency (50\% Duty Cycle)	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} \hline 3.0 \\ 7.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & \hline 1.7 \\ & 5.0 \\ & 6.7 \end{aligned}$	MHz
$\mathrm{t}_{\text {su }}$	Setup Time, A or B to Clock or CE Worst case condition: $\mathrm{L} 1=\mathrm{L} 2=\mathrm{L} 4=\mathrm{L} 8=$ $\mathrm{L} 16=\mathrm{L} 32=\mathrm{V}_{\mathrm{SS}}($ Register Length $=1)$ Best case condition: $\mathrm{L} 32=\mathrm{V}_{\mathrm{DD}}$, L 1 through $\mathrm{L} 16=$ Don't Care (Any register length from 33 to 64)	$\begin{gathered} 5 \\ 10 \\ 15 \\ \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 700 \\ & 290 \\ & 145 \\ & \hline 400 \\ & 165 \\ & 60 \end{aligned}$	350 130 85 45 5 0	$\begin{aligned} & - \\ & - \\ & - \\ & \hline- \\ & - \\ & - \end{aligned}$	ns
t_{h}	Hold Time, Clock or CE to A or B Best case condition: $\mathrm{L} 1=\mathrm{L} 2=\mathrm{L} 4=\mathrm{L} 8=\mathrm{L} 16=$ L32 $=\mathrm{V}_{\text {SS }}($ Register Length $=1)$ Worst case condition: L32 $=\mathrm{V}_{\mathrm{DD}}$, L1 through L16 $=$ Don't Care (Any register length from 33 to 64)	$\begin{gathered} 5 \\ 10 \\ 15 \\ \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 10 \\ \hline 400 \\ 185 \\ 85 \end{gathered}$	-150 -60 -50 50 25 22	$\begin{aligned} & - \\ & - \\ & - \\ & \hline- \\ & - \\ & - \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Rise and Fall Time, Clock	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$		No Limit		-
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Rise and Fall Time, Reset or $\overline{\text { CE }}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$		$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} 15 \\ 5 \\ 4 \end{gathered}$	us
$\mathrm{t}_{\text {rem }}$	Removal Time, Reset to Clock or CE	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline 160 \\ 80 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 80 \\ & 40 \\ & 35 \\ & \hline \end{aligned}$		ns

6. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 4. Timing Diagram

ORDERING INFORMATION

Device	Package	Shipping †
MC14557BFELG	SOEIAJ-16 (Pb-Free)	$2000 /$ Tape \& Reel
MC14557BDWR2G	SO-16 (WB)	$1000 /$ Tape \& Reel
MC14557BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14557BDWG	SO-16 (WB)	47 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC14557B

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
CASE 648-08
ISSUE T

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.740	0.770	18.80	19.55	
B	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100		BSC	2.54 BSC	
H	0.050 BSC		1.27		
BSC					
J	0.008	0.015	0.21		
K	0.110	0.130	2.30	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0	0	
S	0.020	0.040	0.51	10°	

SO-16 WB
DW SUFFIX
CASE 751G-03
ISSUE C

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
\mathbf{q}	0°	7°

PACKAGE DIMENSIONS

SOEIAJ-16
CASE 966-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS

Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITI DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

[^1]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

