ON Semiconductor

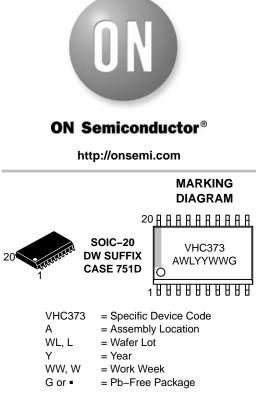
Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Octal D-Type Latch with 3-State Output

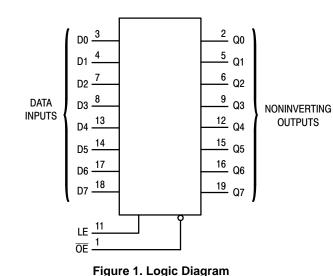

The MC74VHC373 is an advanced high speed CMOS octal latch with 3-state output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This 8-bit D-type latch is controlled by a latch enable input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $t_{PD} = 5.0 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4.0 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: $V_{OLP} = 0.9 V (Max)$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 186 FETs or 46.5 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant


(Note: Microdot may be in either location)

PIN ASSIGNMENT

ŌE	þ	1●	20	þ	V _{CC}
Q0	þ	2	19	þ	Q7
D0	þ	3	18	þ	D7
D1	þ	4	17	þ	D6
Q1	þ	5	16	þ	Q6
Q2	þ	6	15	þ	Q5
D2	þ	7	14	þ	D5
D3	þ	8	13	þ	D4
Q3	þ	9	12	þ	Q4
GND	þ	10	11	þ	LE
				•	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

FUNCTION TABLE

	INPUTS	OUTPUT	
OE	LE	D	q
L L L H	H H L X	H L X X	H L No Change Z

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage	- 0.5 to + 7.0	V
V _{out}	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current	- 20	mA
I _{OK}	Output Diode Current	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 75	mA
PD	Power Dissipation in Still Air, SOIC Package†	500	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Package: - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	5.5	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature	- 40	+ 85	°C
t _r , t _f	Input Rise and Fall Time $$V_{CC}$=3.3~V$\\ V_{CC}=5.0~V$$	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}		T _A = 25°C	2	$T_A = -40$	0 to 85°C	
Symbol	Parameter	Test Conditions	v	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High–Level Input Voltage		2.0 3.0 to 5.5	1.50 V _{CC} x 0.7			1.50 V _{CC} x 0.7		V
V _{IL}	Maximum Low–Level Input Voltage		2.0 3.0 to 5.5			0.50 V _{CC} x 0.3		0.50 V _{CC} x 0.3	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu\text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44	
l _{in}	Maximum Input Leakage Current	V _{in} = 5.5 V or GND	0 to 5.5			± 0.1		± 1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	$V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or } GND$	5.5			± 0.25		± 2.5	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	5.5			4.0		40.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0$ ns)

					T _A = 25°C		$T_A = -40$	0 to 85°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, D to Q	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		7.3 9.8	11.4 14.9	1.0 1.0	13.5 17.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		4.9 6.4	7.2 9.2	1.0 1.0	8.5 10.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, LE to Q	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		7.0 9.5	11.0 14.5	1.0 1.0	13.0 16.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		5.0 6.5	7.2 9.2	1.0 1.0	8.5 10.5	
t _{PZL} , t _{PZH}	Output Enable Time, OE to Q	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_{L} = 1 \text{ k}\Omega$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		7.3 9.8	11.4 14.9	1.0 1.0	13.5 17.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_{L} = 1 \text{ k}\Omega$			5.5 7.0	8.1 10.1	1.0 1.0	9.5 11.5	
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to Q	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_{L} = 1 \text{ k}\Omega$	C _L = 50 pF		9.5	13.2	1.0	15.0	ns
		$V_{CC} = 5.0 \pm 0.5 V$ R _L = 1 kΩ	C _L = 50 pF		6.5	9.2	1.0	10.5	
t _{OSLH} , t _{OSHL}	Output to Output Skew	$V_{CC} = 3.3 \pm 0.3 V$ (Note 1)	C _L = 50 pF			1.5		1.5	ns
		$V_{CC} = 5.5 \pm 0.5 V$ (Note 1)	C _L = 50 pF			1.0		1.0	ns

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)

				T _A = 25°C		$T_A = -40$	0 to 85°C	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Unit
C _{in}	Maximum Input Capacitance			4	10		10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High–Impedance State)			6				pF

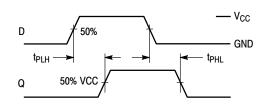
		Typical @ 25°C, V_{CC} = 5.0 V		ĺ
C _{PD}	Power Dissipation Capacitance (Note 2)	27	pF	

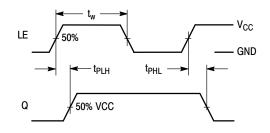
Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.
 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per latch). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Parameter	Тур	Мах	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.6	0.9	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	- 0.6	- 0.9	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		3.5	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.5	V

TIMING REQUIREMENTS (Input $t_r = t_f = 3.0 \text{ ns}$)


			T _A =	: 25°C	T _A = − 40 to 85°C	
Symbol	Parameter	Test Conditions	Тур	Limit	Limit	Unit
t _{w(h)}	Minimum Pulse Width, LE	$V_{CC} = 3.3 \pm 0.3 V$ $V_{CC} = 5.0 \pm 0.5 V$		5.0 5.0	5.0 5.0	ns
t _{su}	Minimum Setup Time, D to LE	$V_{CC} = 3.3 \pm 0.3 V \\ V_{CC} = 5.0 \pm 0.5 V$		4.0 4.0	4.0 4.0	ns
t _h	Minimum Hold Time, D to LE	$V_{CC} = 3.3 \pm 0.3 V$ $V_{CC} = 5.0 \pm 0.5 V$		1.0 1.0	1.0 1.0	ns


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHC373DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SWITCHING WAVEFORMS

VALID

th

50%

V_{CC}

GND

- V_{CC}

- GND

Figure 3.

50%

-

D

LE

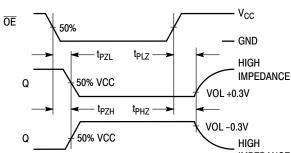


Figure 2.

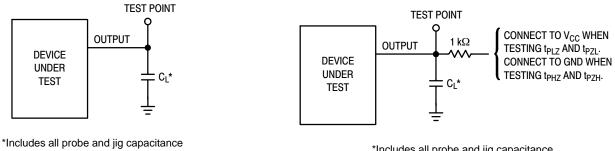

IMPEDANCE

Figure 4.

Figure 5.

t_{su}

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 7.

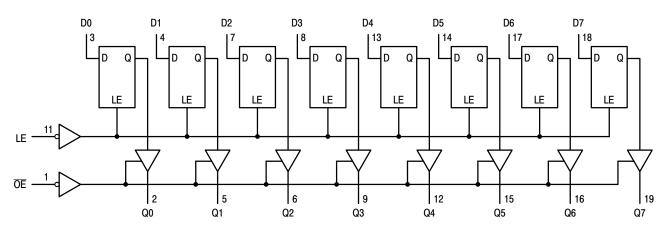


Figure 8. EXPANDED LOGIC DIAGRAM

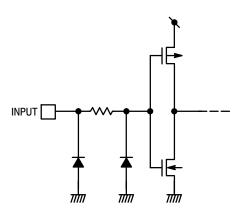
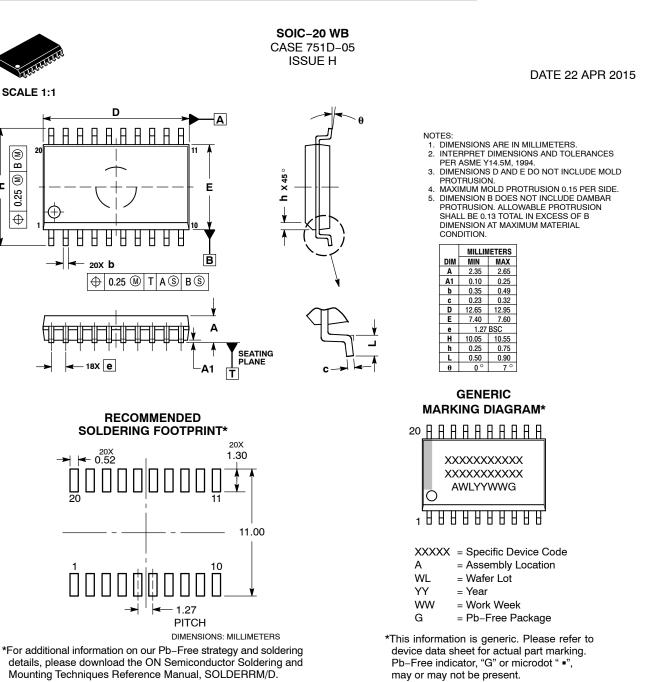



Figure 9. INPUT EQUIVALENT CIRCUIT

т

 DOCUMENT NUMBER:
 98ASB42343B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-20 WB
 PAGE 1 OF 1

 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥