ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Hex Buffer

The MC74VHC50 is an advanced high speed CMOS buffer fabricated with silicon gate CMOS technology.

The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

- High Speed: $t_{PD} = 3.8 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 0.8 V (Max)
- These Devices are Pb-Free and are RoHS Compliant

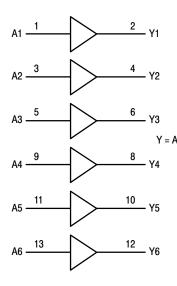


Figure 1. Logic Diagram

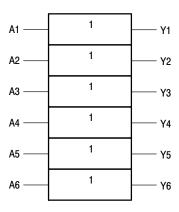
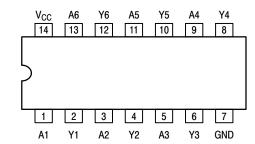


Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com



14-LEAD SOIC D SUFFIX CASE 751A 14-LEAD TSSOP DT SUFFIX CASE 948G

14-LEAD SOIC EIAJ M SUFFIX CASE 965

PIN CONNECTION AND MARKING DIAGRAM (Top View)

For detailed package marking information, see the Marking Diagram section on page 4 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	L
Н	Н

ORDERING INFORMATION

Device	Package	Shipping
MC74VHC50DG	soic	55 Units/Rail
MC74VHC50MG	SOIC EIAJ	50 Units/Rail
MC74VHC50DR2G	SOIC	2500 Units/T&R
MC74VHC50DTR2G	TSSOP	2500 Units/T&R

MAXIMUM RATINGS

Symbol		Parameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current	V _I < GND	-20	mA
I _{OK}	DC Output Diode Current	V _O < GND	±20	mA
l _{out}	DC Output Sink Current		±25	mA
Icc	DC Supply Current per Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		−65 to +150	°C
TL	Lead Temperature, 1 mm from Case	e for 10 Seconds	260	°C
T _J	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance	(Note 1) SOIC TSSOP	125 170	°C/W
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30 to 35	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 200 2000	V
I _{Latch-Up}	Latch-Up Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	2.0	5.5	٧
VI	Input Voltage (Note	6) 0	5.5	٧
Vo	Output Voltage (HIGH or LOW Stat	e) 0	V_{CC}	V
T _A	Operating Free-Air Temperature	– 55	+ 125	°C
Δt/ΔV	Input Transition Rise or Fall Rate $ V_{CC} = 3.0 \text{ V} \pm 0.3 $ $ V_{CC} = 5.0 \text{ V} \pm 0.5 $	V 0 V 0	100 20	ns/V

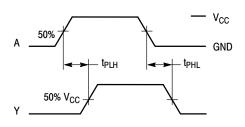
^{6.} Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

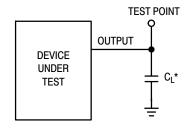
NOTE: The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	1	Γ _A = 25°(С	T _A ≤	85°C	T _A ≤ 1	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.0 3.15 3.85			1.5 2.0 3.15 3.85		1.5 2.0 3.15 3.85		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$\begin{split} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \end{split}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0		±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5			2.0		20		40	μΑ

AC ELECTRICAL CHARACTERISTICS (C_{load} = 50 pF, Input t_r = t_f = 3.0 ns)


				T _A = 25°C			$T_{A} \le 85^{\circ}C$		T _A ≤ 125° C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		5.0 7.5	7.1 10.6		8.5 12.0		10.0 14.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		3.8 5.3	5.5 7.5		6.5 8.5		8.0 10.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF


		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Note 7)	18	pF

^{7.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$, $C_L = 50 \text{ pF}$, $V_{CC} = 5.0 \text{ V}$)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.8	1.0	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.8	-1.0	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		3.5	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.5	V

*Includes all probe and jig capacitance
Figure 4. Test Circuit

Figure 3. Switching Waveforms

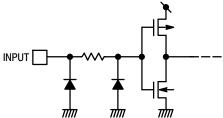
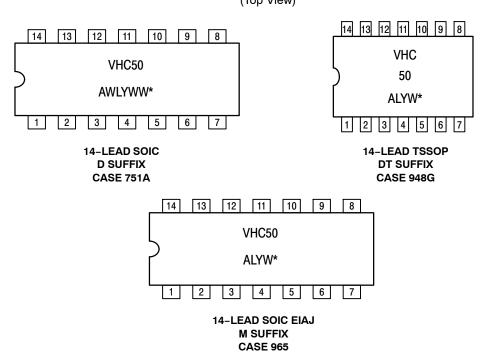
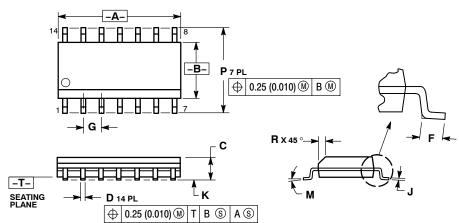
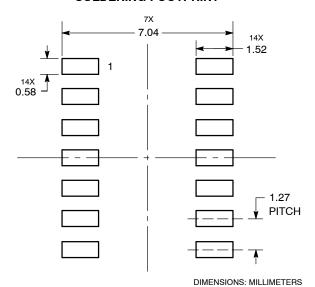



Figure 5. Input Equivalent Circuit

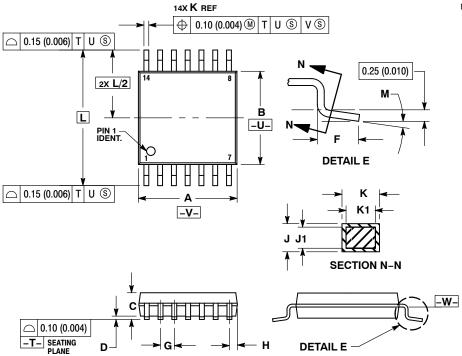

MARKING DIAGRAMS (Top View)

*See Applications Note #AND8004/D for date code and traceability information.

PACKAGE DIMENSIONS


SOIC-14 CASE 751A-03 **ISSUE J**

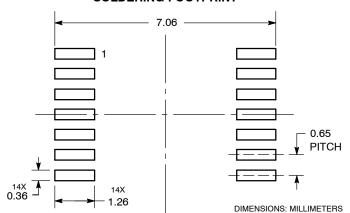
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	BSC
٦	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0 °	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
В	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT

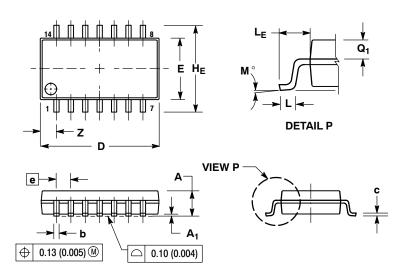
PACKAGE DIMENSIONS

TSSOP-14 CASE 948G-01 **ISSUE B**


- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
- CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.


	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
М	0 °	8 °	0 °	8 °	

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

SOEIAJ-14 CASE 965-01 **ISSUE B**

NOTES:

- DIMENSIONING AND . Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE
 AND ARE
 AND ARE DIMENSIONING AND TOLERANCING PER ANSI
- B. DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 I. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.

 DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.004	0.008
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q_1	0.70	0.90	0.028	0.035
Z		1.42		0.056

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC74VHC50/D