NLSV2T244

2-Bit Dual-Supply Non-Inverting Level Translator

The NLSV2T244 is a 2-bit configurable dual-supply voltage level translator. The input A_{n} and output B_{n} ports are designed to track two different power supply rails, $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_{n} to the output B_{n} port.

Features

- Wide $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with $\mathrm{V}_{\mathrm{CCB}}$ at GND
- Small Packaging: UDFN8, SO-8, Micro8
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Other Portable Devices

Important Information

- ESD Protection for All Pins:

HBM (Human Body Model) > 5000 V

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

	MARKING DIAGRAMS
	UDFN8 MU SUFFIX CASE 517AJ
	$\begin{aligned} & =\text { Specific Device Code } \\ & \text { = Date Code } \\ & =\text { Pb-Free Package } \end{aligned}$
A L Y W	$\begin{aligned} & \text { }=\text { Assembly Location } \\ & \text { = Wafer Lot } \\ & \text { = Year } \\ & \text { = Work Week } \\ & =\text { Pb-Free Package } \end{aligned}$
$\begin{aligned} & \text { A } \\ & \text { Y } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { = Assembly Location } \\ & \text { = Year } \\ & \text { = Work Week } \\ & \text { = Pb-Free Package } \end{aligned}$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLSV2T244MUTAG	UDFN8 (Pb-Free)	 Reel
NLSV2T244DR2G	SO-8 (Pb-Free)	 Reel
NLSV2T244DMR2G	Micro8 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Logic Diagram

PIN ASSIGNMENTS

TRUTH TABLE

Inputs		Outputs
$\overline{\mathrm{OE}}$	A_{n}	B_{n}
L	L	L
L	H	H
H	X	$3-$ State

PIN ASSIGNMENT

PIN	FUNCTION
$V_{\text {CCA }}$	Input Port DC Power Supply
$V_{\text {CCB }}$	Output Port DC Power Supply
GND	Ground
A_{n}	Input Port
B_{n}	Output Port
$\overline{O E}$	Output Enable

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	DC Supply Voltage		-0.5 to +5.5		V
V_{1}	DC Input Voltage	A_{n}	-0.5 to +5.5		V
V_{C}	Control Input	$\overline{\mathrm{OE}}$	-0.5 to +5.5		V
V_{O}	DC Output Voltage (Power Down)	B_{n}	-0.5 to +5.5	$\mathrm{V}_{\text {CCA }}=\mathrm{V}_{\text {CCB }}=0$	V
	(Active Mode)	B_{n}	-0.5 to +5.5		V
	(Tri-State Mode)	B_{n}	-0.5 to +5.5		V
IIK	DC Input Diode Current		-20	$\mathrm{V}_{1}<$ GND	mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current		-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
10	DC Output Source/Sink Current		± 50		mA
$I_{\text {CCA }}, \mathrm{I}_{\text {CCB }}$	DC Supply Current Per Supply Pin		± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin		± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65 to +150		${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Positive DC Supply Voltage		0.9	4.5	V
V_{1}	Bus Input Voltage		GND	4.5	V
V_{C}	Control Input	OE	GND	4.5	V
V_{10}	Bus Output Voltage (Power Down Mode)	B_{n}	GND	4.5	V
	(Active Mode)	B_{n}	GND	$\mathrm{V}_{\text {CCB }}$	V
	(Tri-State Mode)	B_{n}	GND	4.5	V
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Rate $\mathrm{V}_{\text {}}$, from 30% to 70% of $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		0	10	nS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
					Min	Max	
V_{IH}	$\begin{aligned} & \text { Input HIGH Voltage } \\ & \text { (An, } \overline{\mathrm{OE} \text {) }} \end{aligned}$		3.6-4.5	0.9-4.5	2.2	-	V
			2.7-3.6		2.0	-	
			2.3-2.7		1.6	-	
			1.4-2.3		$0.65{ }^{*} \mathrm{~V}_{\text {CCA }}$	-	
			0.9-1.4		0.9 * $\mathrm{V}_{\text {CCA }}$	-	
$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \text { Input LOW Voltage } \\ & \text { (An, OE) } \end{aligned}$		3.6-4.5	0.9-4.5	-	0.8	V
			2.7-3.6		-	0.8	
			2.3-2.7		-	0.7	
			1.4-2.3		-	0.35 * $\mathrm{V}_{\text {CCA }}$	
			0.9-1.4		-	0.1 * $\mathrm{V}_{\text {CCA }}$	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	0.9-4.5	0.9-4.5	$\mathrm{V}_{\text {CCB }}-0.2$	-	V
		$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	0.9	0.9	0.75 * $\mathrm{V}_{\text {CCB }}$	-	
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.4	1.4	1.05	-	
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.65	1.65	1.25	-	
			2.3	2.3	2.0	-	
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{1 \mathrm{H}}$	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	3.0	3.0	2.2	-	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$	0.9-4.5	0.9-4.5	-	0.2	V
		$\mathrm{I}_{\text {OL }}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$	1.1	1.1	-	0.3	
		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	1.4	1.4	-	0.35	
		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	1.65	1.65	-	0.3	
		$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	2.3	2.3	-	0.6	
			3.0	3.0	-	0.4	
		$\mathrm{I}_{\text {OL }}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	3.0	3.0	-	0.55	
1	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$
IoFF	Power-Off Leakage Current	$\overline{\mathrm{OE}}=0 \mathrm{~V}$	$\begin{gathered} 0 \\ 0.9-4.5 \end{gathered}$	$\begin{gathered} 0.9-4.5 \\ 0 \end{gathered}$	$\begin{aligned} & \hline-1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
ICCA	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	1.0	$\mu \mathrm{A}$
$I_{\text {ccB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	1.0	$\mu \mathrm{A}$
$I_{\text {CCA }}+I_{\text {CCB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	2.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CCA }}$	Increase in ICC per Input Voltage, Other Inputs at $\mathrm{V}_{\text {CCA }}$ or GND	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }} \text { or } G N D \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CCB }}$	Increase in ICC per Input Voltage, Other Inputs at $\mathrm{V}_{\text {CCA }}$ or GND	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CCA}}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & \hline 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
l O	I/O Tri-State Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \overline{\mathrm{OE}}=0 \mathrm{~V}$	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TOTAL STATIC POWER CONSUMPTION (ICCA $+\mathrm{I}_{\mathrm{CCB}}$)

$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Unit
	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$										
	4.5		3.3		2.8		1.8		0.9		
	Min	Max									
4.5		2		2		2		2		<1.5	$\mu \mathrm{A}$
3.3		2		2		2		2		< 1.5	$\mu \mathrm{A}$
2.8		<2		<1		<1		< 0.5		< 0.5	$\mu \mathrm{A}$
1.8		<1		< 1		< 0.5		< 0.5		< 0.5	$\mu \mathrm{A}$
0.9		<0.5		<0.5		<0.5		<0.5		<0.5	$\mu \mathrm{A}$

NOTE: Connect ground before applying supply voltage $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$. This device is designed with the feature that the power-up sequence of $V_{C C A}$ and $V_{C C B}$ will not damage the IC.
AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Unit
			$\mathrm{V}_{\text {CCB }}(\mathrm{V})$										
			4.5		3.3		2.8		1.8		1.2		
			Min	Max									
$t_{\text {PLH }}$, tpHL (Note 1)	Propagation Delay,$A_{n} \text { to } B_{n}$	4.5		1.6		1.8		2.0		2.1		2.3	nS
		3.3		1.7		1.9		2.1		2.3		2.6	
		2.8		1.9		2.1		2.3		2.5		2.8	
		1.8		2.1		2.4		2.5		2.7		3.0	
		1.2		2.4		2.7		2.8		3.0		3.3	
$t_{P Z H}$, $t_{\text {PZL }}$ (Note 1)	Output Enable, $\overline{O E}$ to B_{n}	4.5		2.6		3.8		4.0		4.1		4.3	nS
		3.3		3.7		3.9		4.1		4.3		4.6	
		2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
$t_{\text {PHZ }}$, tpLZ (Note 1)	Output Disable, $\overline{O E}$ to B_{n}	4.5		2.6		3.8		4.0		4.1		4.3	nS
		3.3		3.7		3.9		4.1		4.3		4.6	
		2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
$\mathrm{t}_{\mathrm{OSHL}}$, tosLh (Note 1)	Output to Output Skew, Time	4.5		0.15		0.15		0.15		0.15		0.15	nS
		3.3		0.15		0.15		0.15		0.15		0.15	
		2.5		0.15		0.15		0.15		0.15		0.15	
		1.8		0.15		0.15		0.15		0.15		0.15	
		1.2		0.15		0.15		0.15		0.15		0.15	

1. Propagation delays defined per Figure 2.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	3.5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I / O Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	pF	
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA}}, \mathrm{f}=10 \mathrm{MHz}$	5.0	

2. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. $\mathrm{C}_{P D}$ is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from:
$I_{C C}$ (operating) $\cong \mathrm{C}_{P D} \times \mathrm{V}_{C C} \times f_{I N} \times N_{S W}$ where $I_{C C}=I_{C C A}+I_{C C B}$ and $N_{S W}=$ total number of outputs switching.

Figure 2. AC (Propagation Delay) Test Circuit

Test	Switch
$\mathrm{tpLH}, \mathrm{tPHL}$	OPEN
$\mathrm{t}_{\text {PLZ }}$, tPZL	$\mathrm{V}_{\mathrm{CCO}} \times 2$
$t_{\text {PHz }}$, tpz	GND
$C_{L}=15 \mathrm{pF}$ or equivalent (includes probe and jig capacitance) $R_{L}=2 \mathrm{k} \Omega$ or equivalent $Z_{\text {OUT }}$ of pulse generator $=50 \Omega$	

Waveform 1 - Propagation Delays
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Waveform 2 - Output Enable and Disable Times
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
Figure 3. AC (Propagation Delay) Test Circuit Waveforms

Symbol	V_{Cc}				
	3.0 V-4.5 V	2.3V-2.7V	$1.65 \mathrm{~V}-1.95 \mathrm{~V}$	1.4 V-1.6 V	0.9 V-1.3 V
V_{mA}	$\mathrm{V}_{\mathrm{CCA}} / 2$				
V_{mB}	$\mathrm{V}_{\mathrm{CCB}} / 2$				
V_{X}	$\mathrm{V}_{\text {OL }} \times 0.1$				
V_{Y}	$\mathrm{V}_{\mathrm{OH}} \times 0.9$				

UDFN8 1.8x1.2, 0.4P CASE 517AJ-01

ISSUE O
DATE 08 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT

SOLDERMASK DEFINED

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALLOWED ON TERMINAL
5. ALONG EDGE OF PACKAGE. FLASH MAY AOT EXCEED O.O3 ONTO BOTTOM NOT EXCEED 0.03 ONTO B
6. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	REF
b	0.15	
	0.25	
b2	0.30	
REF		
D	1.80 BSC	
E	1.20 BSC	
e	0.40 BSC	
L	0.45	0.55
L1	0.00	
L2	0.03	

GENERIC MARKING DIAGRAM*

XXM						

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8 1.8X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE 2:
PIN 1. COLLECTOR,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5. P-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	--	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	
L	0.40	5.05	

[^1]
STYLE 3:

STYLE 1:	STYLE 2.
PIN 1. SOURCE	PIN 1. SOURCE 1
2. SOURCE	2. GATE 1
3. SOURCE	3. SOURCE 2
4. GATE	4. GATE 2
5. DRAIN	5. DRAIN 2
6. DRAIN	6. DRAIN 2
7. DRAIN	7. DRAIN 1
8. DRAIN	8. DRAIN 1

PIN 1. N-SOURCE
2. N-GATE 3. P-SOURCE
4. P-GATE
5. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot """, may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: Solderrng and
 SLLDERRM/D.

