Noninverting Buffer / CMOS Logic Level Shifter # with LSTTL-Compatible Inputs The MC74VHC1GT125E is a single gate noninverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74VHC1GT125E requires the 3–state control input (\overline{OE}) to be set High to place the output into the high impedance state. The device input is compatible with TTL-type input thresholds and the output has a full 5 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3 V CMOS logic to 5 V CMOS Logic or from 1.8 V CMOS logic to 3 V CMOS Logic while operating at the high-voltage power supply. The MC74VHC1GT125E input structure provides protection when voltages up to 5.5 V are applied, regardless of the supply voltage. This allows the MC74VHC1GT125E to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{CC} = 0$ V. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - High Speed: $t_{PD} = 3.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$ - Low Power Dissipation: $I_{CC} = 1 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$ - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2 \text{ V}$ - CMOS–Compatible Outputs: $V_{OH} > 0.8 V_{CC}$; $V_{OL} < 0.1 V_{CC}$ @Load - Power Down Protection Provided on Inputs and Outputs - Balanced Propagation Delays - Pin and Function Compatible with Other Standard Logic Families - Chip Complexity: FETs = 62; Equivalent Gates = 16 - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 2. Logic Symbol # ON Semiconductor® www.onsemi.com ### MARKING DIAGRAMS SC-88A / SOT-353 / SC-70 DF SUFFIX CASE 419A W1 = Device Code M = Date Code* ■ Pb–Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. | PIN ASSIGNMENT | | | | | |----------------|-----------------|--|--|--| | 1 | ŌĒ | | | | | 2 | IN A | | | | | 3 | GND | | | | | 4 | OUT Y | | | | | 5 | V _{CC} | | | | #### **FUNCTION TABLE** | A Input | OE Input | Y Output | |---------|----------|----------| | L | L | L | | Н | L | Н | | X | Н | Z | #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. # **MAXIMUM RATINGS** | Symbol | С | Value | Unit | | |----------------------|--|--|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage | Tri–State Mode $V_{CC} = 0$ High or Low State | -0.5 to +6.5
-0.5 to +6.5
-0.5 to V _{CC} + 0.5 | V | | I _{IK} | Input Diode Current | | -20 | mA | | I _{OK} | Output Diode Current | $V_{OUT} < GND; V_{OUT} > V_{CC}$ | +20 | mA | | I _{OUT} | DC Output Current, per Pin | | +25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND | | +50 | mA | | P _D | Power Dissipation in Still Air | SC-88A | 200 | mW | | $\theta_{\sf JA}$ | Thermal Resistance | SC-88A | 333 | °C/W | | TL | Lead Temperature, 1 mm from Case f | or 10 s | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | T _{stg} | Storage Temperature | | -65 to +150 | °C | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 1)
Charged Device Model (Note 2) | > 4000
> 1000 | V | | I _{Latchup} | Latchup Performance | Above V _{CC} and Below GND at 125°C (Note 3) | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Tested to EIA/JESD22-A114-A - 2. Tested to JESD22-C101-A - 3. Tested to EIA/JESD78 # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Characteristics | Min | Max | Unit | |---------------------------------|---|-----|-----------------|------| | V _{CC} | DC Supply Voltage | 3.0 | 5.5 | V | | V _{IN} | DC Input Voltage | 0.0 | 5.5 | V | | V _{OUT} | DC Output Voltage | 0.0 | V _{CC} | V | | T _A | Operating Temperature Range | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0 | 5 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | • | T _A = 25° | С | T _A ≤ | 85°C | -55 ≤ T _A | ≤ 125°C | | |------------------|--|---|-------------------|-------------------|----------------------|--------------------|-------------------|--------------------|----------------------|--------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 3.0
4.5
5.5 | 1.4
2.0
2.0 | | | 1.4
2.0
2.0 | | 1.4
2.0
2.0 | | V | | V _{IL} | Maximum Low-Level Input Voltage | | 3.0
4.5
5.5 | | | 0.53
0.8
0.8 | | 0.53
0.8
0.8 | | 0.53
0.8
0.8 | V | | V _{OH} | Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{II} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu\text{A}$ | 3.0
4.5 | 2.9
4.4 | 3.0
4.5 | | 2.9
4.4 | | 2.9
4.4 | | V | | | VIN = VIH OI VIL | $\begin{aligned} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ I_{OH} &= -4 \text{ mA} \\ I_{OH} &= -8 \text{ mA} \end{aligned}$ | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | 2.34
3.66 | | | | V _{OL} | Maximum Low–Level Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$ | 3.0
4.5 | | 0.0
0.0 | 0.1
0.1 | | 0.1
0.1 | | 0.1
0.1 | V | | | $V_{IN} = V_{IH}$ or V_{IL} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$ | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | | | I _{IN} | Maximum Input
Leakage Current | V _{IN} = 5.5 V or GND | 0 to
5.5 | | | ± 0.10 | | ± 1.0 | | ± 1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 1.0 | | 20 | | 40 | μΑ | | I _{CCT} | Additional Quiescent
Supply Current per
Input Pin | Input: V _{IN} = 3.4 V
Other Input: V _{CC} or
GND | 5.5 | | | 1.35 | | 1.50 | | 1.65 | mA | | I _{OPD} | Power Off Output
Leakage Current | V _{OUT} = 5.5 V | 0.0 | | | 0.5 | | 5.0 | | 10 | μΑ | | I _{OZ} | Maximum 3–State
Leakage Current | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = V_{CC}$ or GND | 5.5 | | | ± 0.25 | | ± 2.5 | | ± 2.5 | μΑ | # AC ELECTRICAL CHARACTERISTICS Input $t_f = t_f = 3.0 \text{ ns}$ | | | T _A = 25 | | A = 25° | С | T _A ≤ | 85°C | -55 ≤ T _A | ≤ 125°C | | | |--|---|----------------------------------|------------------------------|---------|------------|-------------------------|------|----------------------|---------|--------------|------| | Symbol | Parameter | Test Condition | ons | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation
Delay, A to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
8.1 | 8.0
11.5 | | 9.5
13.0 | | 12.0
16.0 | ns | | | (Figure 5) | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 3.8
5.3 | 5.5
7.5 | | 6.5
8.5 | | 8.5
10.5 | | | t _{PZL} ,
t _{PZH} | Maximum Output
Enable TIme, OE to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.4
7.9 | 8.0
11.5 | | 9.5
13.0 | | 11.5
15.0 | ns | | | (Figures 3 and 4) | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 3.6
5.1 | 5.1
7.1 | | 6.0
8.0 | | 7.5
9.5 | | | t _{PLZ} ,
t _{PHZ} | Maximum Output Disable Time, OE to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 6.5
8.0 | 9.7
13.2 | | 11.5
15.0 | | 14.5
18.0 | ns | | | (Figures 3 and 4) | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 4.8
7.0 | 6.8
8.8 | | 8.0
10.0 | | 10.0
12.0 | | | C _{in} | Maximum Input Capacitance | | | | 4 | 10 | | 10 | | 10 | pF | | C _{out} | Maximum Three–State Output Capacitance (Output in High Impedance State) | | | | 6 | | | | | | pF | | | | | | | | | | | | | | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Note 4) | 14 | pF | ^{4.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/4 (per buffer). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. #### **SWITCHING WAVEFORMS** Figure 3. Switching Waveforms *Includes all probe and jig capacitance DEVICE UNDER TEST C_L^* CONNECT TO V_{CC} WHEN TESTING t_{PLZ} AND t_{PZL} . CONNECT TO GND WHEN TESTING t_{PLZ} AND t_{PZH} . *Includes all probe and jig capacitance Figure 5. Test Circuit Figure 6. Test Circuit Figure 7. Input Equivalent Circuit # ORDERING INFORMATION | Device | Package | Shipping [†] | |---------------------|---------------------------------------|-----------------------| | MC74VHC1GT125EDFT2G | SC-88A / SOT-353 / SC-70
(Pb-Free) | 3000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### PACKAGE DIMENSIONS #### SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L NOTES BURRS DIM **B** 0.045 0.053 D G DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. 419A-01 OBSOLETE. NEW STANDARD DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE INCHES MIN MAX 0.031 0.043 0.004 | 0.012 0.026 BSC --- 0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 0.071 0.087 MILLIMETERS MIN MAX 0.10 0.30 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 0.65 BSC 2.20 1.35 1.80 1.15 0.80 # **SOLDER FOOTPRINT** ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor designations and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliate #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative ♦ MC74VHC1GT125E/D