

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

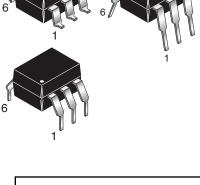
MCT5211

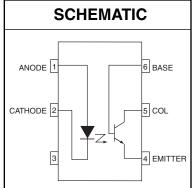
Description

The MCT52XX series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% $CTR_{CE(SAT)}$ with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20K bits/s are possible.

The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.


- High CTR_{CE(SAT)} comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection 5kV/µs
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file #E90700)
- VDE recognized (file #94766)
 - Add option 300 (e.g., MCT5211.300)


Applications

- CMOS to CMOS/LSTTL logic isolation
- LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver
- Telephone ring detector
- AC line voltage sensing
- Switching power supply

Parameters	Symbol	Device	Value	Units
TOTAL DEVICE				
Storage Temperature	T _{STG}	All	-55 to +150	°C
Operating Temperature	T _{OPR}	All	-55 to +100	°C
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C
Total Device Power Dissipation @ 25°C (LED plus detector)	Р	All	260	mW
Derate Linearly From 25°C	PD	All	3.5	mW/°C
EMITTER				
Continuous Forward Current	I _F	All	50	mA
Reverse Input Voltage	V _R	All	6	V
Forward Current - Peak (1 µs pulse, 300 pps)	l _F (pk)	All	3.0	A
LED Power Dissipation	Р	All	75	mW
Derate Linearly From 25°C	PD	All	1.0	mW/°C
DETECTOR				
Continuous Collector Current	Ι _C	All	150	mA
Detector Power Dissipation		All	150	mW
Derate Linearly from 25°C	PD	All	2.0	mW/°C

© 2003 Fairchild Semiconductor Corporation

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise specified.)							
INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameters Test Conditions Symbol Device Min Typ [*]					Тур**	Max	Units
EMITTER							
Input Forward Voltage	(I _F = 5 mA)	V _F	All		1.25	1.5	v
Forward Voltage Temp. Coefficient	(I _F = 2 mA)	$\frac{\Delta V_{F}}{\Delta T_{A}}$	All		-1.75		mV/ °C
Reverse Voltage	(I _R = 10 μA)	V _R	All	6			V
Junction Capacitance	(V _F = 0 V, f = 1.0 MHz)	CJ	All		18		pF
DETECTOR							
Collector-Emitter Breakdown Voltage	(I _C = 1.0 mA, I _F = 0)	BV _{CEO}	All	30	100		V
Collector-Base Breakdown Voltage	$(I_{C} = 10 \ \mu A, I_{F} = 0)$	BV _{CBO}	All	30	120		V
Emitter-Base Breakdown Voltage	$(I_{C} = 10 \ \mu A, I_{F} = 0)$	BV _{EBO}	All	5	10		V
Collector-Emitter Dark Current	$(V_{CE} = 10V, I_F = 0, R_{BE} = 1M\Omega)$	I _{CER}	All		1	100	nA
Capacitance Collector to Emitter (V _{CE} = 0, f = 1 MHz)		C _{CE}	All		10		pF
Collector to Base $(V_{CB} = 0, f = 1 \text{ MHz})$		C _{CB}	All		80		pF
Emitter to Base (V _{EB} = 0, f = 1 MHz) C _{EB} All 15 p				pF			

ISOLATION CHARACTERISTICS

Characteristic Test Conditions S		Symbol	Device	Min	Typ**	Max	Units
Input-Output Isolation Voltage ⁽¹⁰⁾	(f = 60Hz, t = 1 min.)	V _{ISO}	All	5300			Vac(rms)
Isolation Resistance ⁽¹⁰⁾	$V_{I-O} = 500 \text{ VDC}, T_A = 25^{\circ}C$	R _{ISO}	All	10 ¹¹			Ω
Isolation Capacitance ⁽⁹⁾	$V_{I-O} = 0, f = 1 MHz$	C _{ISO}	All		0.7		pF
Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 0$	CM	MCT5210/11		5000		V/µs
Rejection – Output High	$V_{CM} = 50 \ V_{P-P}, \ R_L = 1 K \Omega, \ I_F = 0$	CM _H	MCT5200/01		5000		v/µs
Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 1.6mA$	CM	MCT5210/11		5000		V/µs
Rejection – Output Low	V_{CM} = 50 V_{P-P1} , R_L = 1K Ω , I_F = 5 mA		MCT5200/01		5000		v/µs

**All typical T_A=25°C

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

TRANSFER CHA	RACTERISTICS (T _A =	= 0°C to 70°C	Unless other	wise specifi	ed.)			
DC Characteristics	Test Condition	ns	Symbol	Device	Min	Typ**	Мах	Units
	I _F = 10 mA, V _{CE} = 0.4 V			MCT5200	75			
Saturated Current	I _F = 5 mA, V _{CE} = 0.4 V		1	MCT5201	120			%
Transfer Ratio ⁽¹⁾	$I_{\rm F} = 3.0 \text{ mA}, V_{\rm CE} = 0.4 \text{ V}$		CTR _{CE(SAT)}	MCT5210	60			
(Collector to Emitter)	I _F = 1.6 mA, V _{CE} = 0.4 V			MOTEOII	100			
	I _F = 1.0 mA, V _{CE} = 0.4 V		1	MCT5211	75			
	I _F = 3.0 mA, V _{CE} = 5.0 V			MCT5210	70			
Current Transfer Ratio (Collector to Emitter) ⁽¹⁾	I _F = 1.6 mA, V _{CE} = 5.0 V		CTR _(CE)		150			%
	I _F = 1.0 mA, V _{CE} = 5.0 V			MCT5211	110			
	I _F = 10 mA, V _{CB} = 4.3 V			MCT5200	0.2			
	I _F = 5 mA, V _{CB} = 4.3 V		1	MCT5201	0.28			
Current Transfer Ratio	I _F = 3.0 mA, V _{CE} = 4.3 V		CTR _(CB)	MCT5210	0.2			%
Collector to Base(2)	I _F = 1.6 mA, V _{CE} = 4.3 V		(,	MOTEON	0.3			
	I _F = 1.0 mA, V _{CE} = 4.3 V			MCT5211	0.25			
	I _F = 10 mA, I _{CE} = 7.5 mA			MCT5200			0.4	
	I _F = 5 mA, I _{CE} = 6 mA			MCT5201			0.4	
Saturation Voltage	I _F = 3.0 mA, I _{CE} = 1.8 mA		V _{CE(SAT)}	MCT5210			0.4	V
	I _F = 1.6 mA, I _{CE} = 1.6 mA		1	MCT5211			0.4	
AC Characteristics	Test Condition	ns	Symbol	Device	Min	Тур	Max	Units
	$R_L = 330 \Omega$, $R_{BE} = \infty$	l _F = 3.0 mA		MCT5210		10		
	$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$	$V_{CC} = 5.0 V$		WIC15210		7		
	R _L = 750 Ω, R _{BE} = ∞	I _F = 1.6mA				14		
Propagation Delay	$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{ k}\Omega$	$V_{CC} = 5.0V$		MCT5211		15		
High to Low ⁽³⁾	$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	I _F = 1.0mA	T _{PHL}	WIG15211		17		μs -
	$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$	$V_{CC} = 5.0V$				24		
	$V_{CE} = 0.4$ V, $V_{CC} = 5$ V,	I _F = 10mA		MCT5200		1.6	12	
	R_L = fig. 13, R_{BE} = 330 k Ω	I _F = 5mA		MCT5201		3	30	
	$R_L = 330 \Omega$, $R_{BE} = \infty$	I _F = 3.0 mA		MCT5210		0.4		
	$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$	$V_{CC} = 5.0 V$		1015210		8		
	$R_L = 750 \Omega$, $R_{BE} = \infty$	I _F = 1.6mA				2.5		
Propagation Delay	$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{ k}\Omega$	$V_{CC} = 5.0V$	т	MCT5211		11		
Low to High ⁽⁴⁾	$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	I _F = 1.0mA	T _{PLH}	101010211		7		μs
	$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$	$V_{CC} = 5.0 V$				16		1
	$V_{CE} = 0.4$ V, $V_{CC} = 5$ V,	I _F = 10mA		MCT5200		18	20	
	$R_L = fig. 13, R_{BE} = 330 \text{ k}\Omega$	I _F = 5mA		MCT5201		12	13	1
	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		0.5	7	
Delay Time ⁽⁵⁾	$ \begin{aligned} R_{BE} &= 330 \; k\Omega, \\ R_{L} &= 1 \; k\Omega, \; V_{CC} &= 5V \end{aligned} $	I _F = 5mA	t _d	MCT5201		1.1	15	μs
(6)	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		1.3	6	
Rise Time ⁽⁶⁾		I _F = 5mA	t _r	MCT5201		2.5	20	μs

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

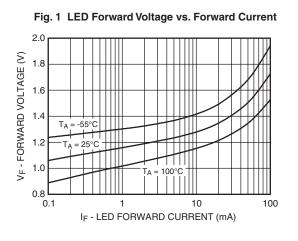
TRANSFER CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C Unless otherwise specified.) (Continued)								
DC Characteristics	Test Conditions		Symbol	Device	Min	Тур**	Max	Units
(7)	$V_{CE} = 0.4 V,$	I _F = 10mA		MCT5200		15	18	
$ \begin{array}{l} \text{Storage Time}^{(7)} \\ \text{R}_{\text{BE}} = 330 \text{ k}\Omega, \\ \text{R}_{\text{L}} = 1 \text{ k}\Omega, \text{V}_{\text{CC}} = 5 \text{V} \end{array} $	I _F = 5mA	t _s	MCT5201		10	13	μs	
(0)	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		16	30	
Fall Time ⁽⁸⁾	Fall Time ⁽⁸⁾ $R_{BE} = 330 \text{ k}\Omega,$ $R_{L} = 1 \text{ k}\Omega, V_{CC} = 5V$	I _F = 5mA	t _f	MCT5201		16	30	μs

**All typicals at T_A = 25°C

Notes

- DC Current Transfer Ratio (CTR_{CE}) is defined as the transistor collector current (I_{CE}) divided by the input LED current (I_F) x 100%, at a specified voltage between the collector and emitter (V_{CE}).
- The collector base Current Transfer Ratio (CTR_{CB}) is defined as the transistor collector base photocurrent(I_{CB}) divided by the input LED current (I_F) time 100%.
- Referring to Figure 14 the T_{PHL} propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3V point on the falling edge of the output pulse.
- Referring to Figure 14 the T_{PLH} propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3V point on the rising edge of the output pulse.
- 5. Delay time (t_d) is measured from 50% of rising edge of LED current to 90% of Vo falling edge.
- 6. Rise time (t_r) is measured from 90% to 10% of Vo falling edge.
- 7. Storage time (t_s) is measured from 50% of falling edge of LED current to 10% of Vo rising edge.
- 8. Fall time (t_f) is measured from 10% to 90% of Vo rising edge.
- 9. C_{ISO} is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pin 4, 5, 6 connected).
- 10. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5, 6 and 7 are shorted together.

SEMICONDUCTOR®


MCT5200

MCT5201

MCT5210

MCT5211

TYPICAL PERFORMANCE GRAPHS

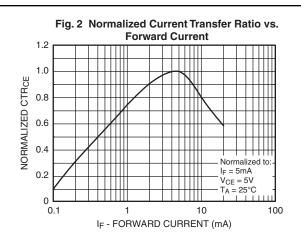


Fig. 3 Normalized CTR vs. Temperature

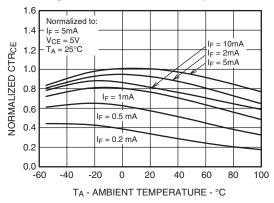


Fig. 5 Normalized Collector Base Photocurrent Ratio vs. Forward Current

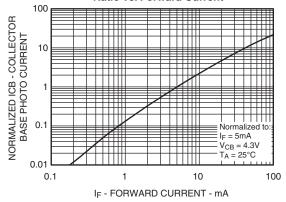


Fig. 4 Normalized Collector vs. Collector - Emitter Voltage

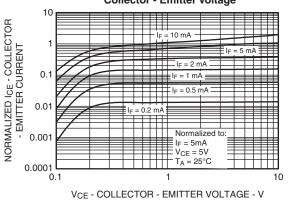
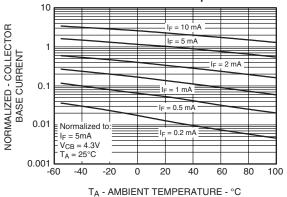
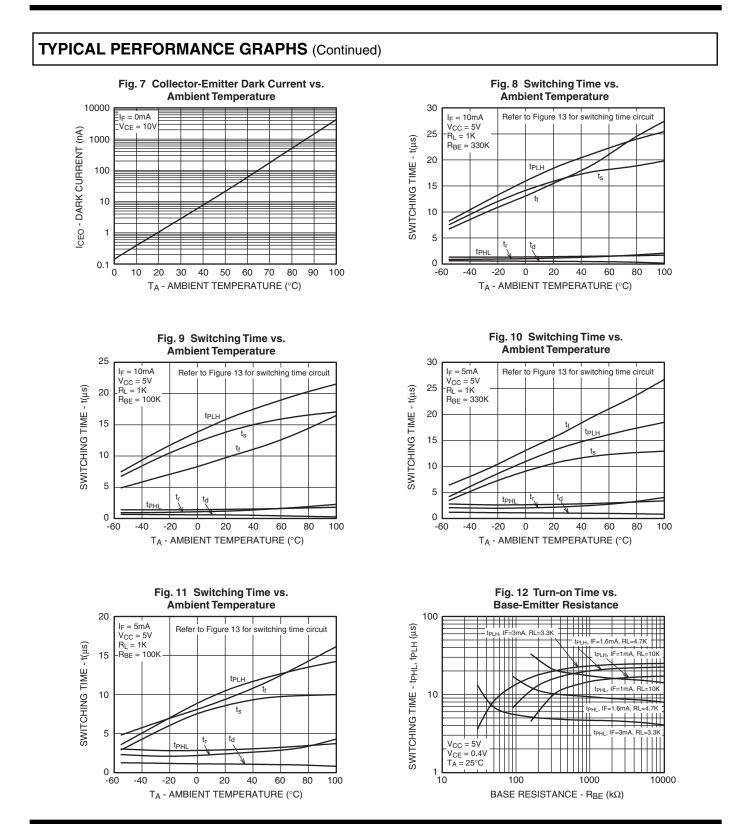



Fig. 6 Normalized Collector -Base Current vs. Temperature


SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

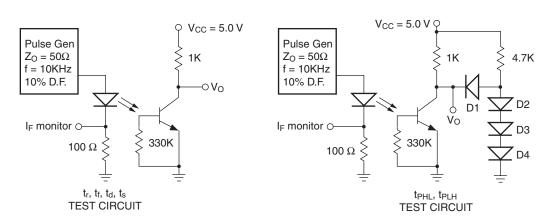


Figure 13.

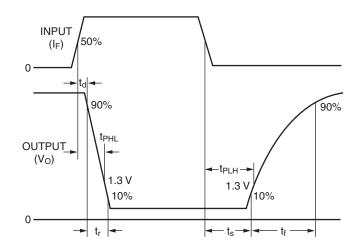
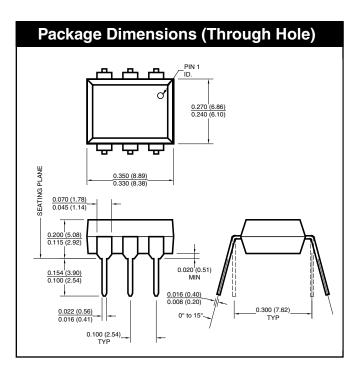
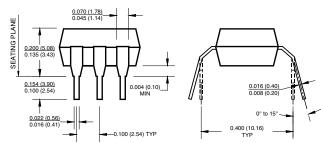


Figure 14. Switching Circuit Waveforms

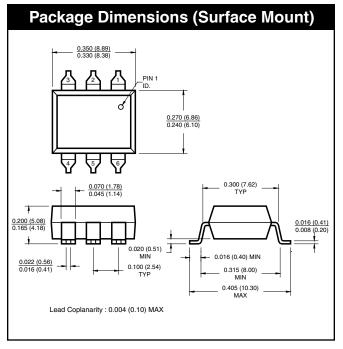

SEMICONDUCTOR®

MCT5200

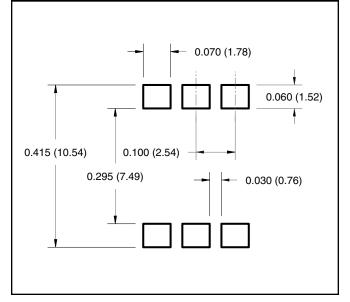

MCT5201

MCT5210

MCT5211



Package Dimensions (0.4" Lead Spacing)



Note

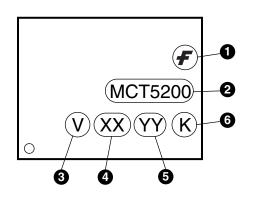
All dimensions are in inches (millimeters)

Recommended Pad Layout for Surface Mount Leadform

SEMICONDUCTOR®

MCT5200

MCT5201

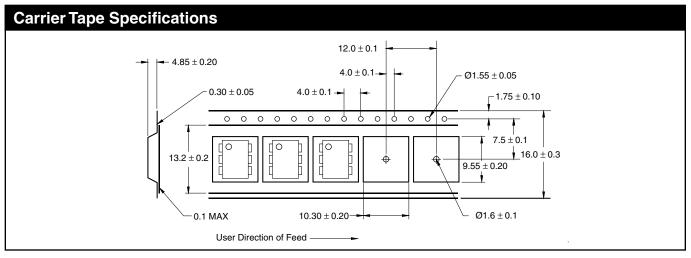

MCT5210

MCT5211

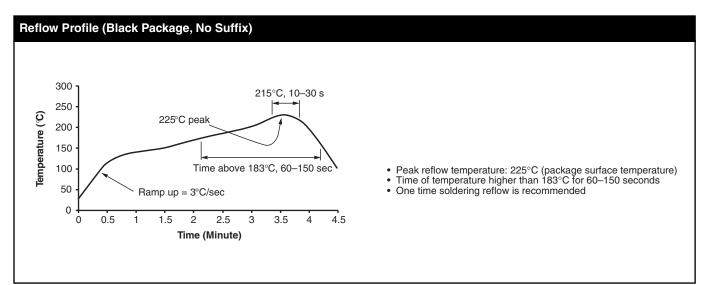
ORDERING INFORMATION

Option	Order Entry Identifier	Description					
S	.S	Surface Mount Lead Bend					
SD	.SD	Surface Mount; Tape and Reel					
W	.W	0.4" Lead Spacing					
300	.300	VDE 0884					
300W	.300W	VDE 0884, 0.4" Lead Spacing					
3S	.3S	VDE 0884, Surface Mount					
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel					

MARKING INFORMATION



Definitions						
1	Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	Two digit year code, e.g., '03'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					


SEMICONDUCTOR®

MCT5200 MCT5201 MCT5210 MCT5211

NOTE

All dimensions are in inches (millimeters)

SEMICONDUCTOR®

MCT5200

MCT5201

MCT5210

MCT5211

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.