MC10EL52，MC100EL52

5 V ECL Differential Data and Clock D Flip－Flop

Description

The MC10EL／100EL52 is a differential data，differential clock D flip－flop with reset．The device is functionally equivalent to the E452 device with higher performance capabilities．With propagation delays and output transition times significantly faster than the E452，the EL52 is ideally suited for those applications which require the ultimate in AC performance．

Data enters the master portion of the flip－flop when the clock is LOW and is transferred to the slave，and thus the outputs，upon a positive transition of the clock．The differential clock inputs of the EL52 allow the device to also be used as a negative edge triggered device．

The EL52 employs input clamping circuitry so that under open input conditions（pulled down to V_{EE} ）the outputs of the device will remain stable．

The 100 Series contains temperature compensation．

Features

－ 365 ps Propagation Delay
－ 2.0 GHz Toggle Frequency
－ESD Protection：
－＞ 1 kV Human Body Model
－＞ 100 V Machine Model
－PECL Mode Operating Range： $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 V
with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
－NECL Mode Operating Range： $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
－Internal Input Pulldown Resistors on D and CLK
－Meets or Exceeds JEDEC Spec EIA／JESD78 IC Latchup Test
－Moisture Sensitivity：
－Level 1 for SOIC－8 NB
－Level 3 for TSSOP－8
－For Additional Information，see Application Note AND8003／D
－Flammability Rating：UL 94 V－0＠ 0.125 in，
Oxygen：Index 28 to 34
－Transistor Count $=48$ Devices
－These Devices are Pb－Free，Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com

MARKING DIAGRAMS＊

8 且且且
HL52

${ }^{1}$ 䀧

8 月朋

Y＝Year
W＝Work Week
－＝Pb－Free Package

A＝Assembly Location
be in either location）
（Note：Microdot may be in either location）
For additional marking information，refer to
Application Note AND8002／D．

ORDERING INFORMATION

Device	Package	Shipping \dagger
MC10EL52DG	SOIC－8 NB （Pb－Free）	98 Units／Tube
MC10EL52DR2G	SOIC－8 NB （Pb－Free）	2500 Tape \＆Reel
MC10EL52DTG	TSSOP－8 （Pb－Free）	100 Units／Tube
MC100EL52DG	SOIC－8 NB （Pb－Free）	48 Units／Tube
MC100EL52DR2G	SOIC－8 NB （Pb－Free）	2500 Tape \＆Reel

\dagger For information on tape and reel specifications，in－ cluding part orientation and tape sizes，please refer to our Tape and Reel Packaging Specifications Brochure，BRD8011／D．

Figure 1. Logic Diagram and Pinout Assignment

Table 1. TRUTH TABLE

\mathbf{D}^{*}	CLK *	\mathbf{Q}
L	Z	L
H	Z	H

Z = LOW to HIGH Transition

* Pin will default low when left open.

Table 2. PIN DESCRIPTION

PIN	FUNCTION
D, \bar{D}	ECL Data Input
CLK, CLK	ECL Clock Input
$\mathrm{Q}, \overline{\mathrm{Q}}$	ECL Data Output
V_{CC}	Positive Supply
V_{EE}	Negative Supply

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & V_{E E}=0 V \\ & V_{C C}=0 V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { SOIC-8 NB } \\ & \text { SOIC-8 NB } \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 130 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \hline \text { TSSOP-8 } \\ & \text { TSSOP-8 } \end{aligned}$	$\begin{aligned} & 185 \\ & 140 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to $44 \pm 5 \%$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	< 2 to 3 sec @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 10EL SERIES PECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{E E}=0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{\text {EE }}$	Power Supply Current		21	25		21	25		21	25	mA
V_{OH}	Output HIGH Voltage (Note 2)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) D CLK	$\begin{aligned} & 3.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.4 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input LOW Current	0.5			0.5			0.3			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}.
V_{EE} can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$ for $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. or V_{EE} can vary $+0.06 \mathrm{~V} /-0.5 \mathrm{~V}$ for $-40^{\circ} \mathrm{C}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with $\mathrm{V}_{E E}, \mathrm{~V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V .

Table 5. 10EL SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
I_{EE}	Power Supply Current		21	25		21	25		21	25	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V_{OL}	Output LOW Voltage (Note 2)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) D CLK	$\begin{aligned} & -1.6 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.6 \end{aligned}$	$\begin{aligned} & -1.6 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.6 \end{aligned}$	$\begin{aligned} & -1.6 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.6 \end{aligned}$	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.3			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}.
V_{EE} can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$ for $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. or V_{EE} can vary $+0.06 \mathrm{~V} /-0.5 \mathrm{~V}$ for $-40^{\circ} \mathrm{C}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $V_{I H C M R}$ min varies $1: 1$ with $V_{E E}, V_{I H C M R}$ max varies $1: 1$ with $V_{C C}$. The $V_{I H C M R}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{Pp} min and 1 V .

Table 6. 100EL SERIES PECL DC CHARACTERISTICS (VCC $=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		21	25		21	25		24	29	mA
V_{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) D CLK	$\begin{aligned} & 2.6 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 4.2 \end{aligned}$	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\text {PP }}$ min and 1 V .

Table 7. 100EL SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		21	25		21	25		24	29	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) D CLK	$\begin{aligned} & -2.4 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -2.4 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -2.4 \\ & -2.5 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\text {PPmin }}$ and 1 V .

Table 8. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
fmax	Maximum Toggle Frequency	1.8	2.5		2.2	2.8		2.2	2.8		GHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to Output CLK	225	335	515	275	365	465	320	410	510	ps
ts	Setup Time	125	0		125	0		125	0		ps
t_{H}	Hold Time	150	50		150	50		150	50		ps
tpW	Minimum Pulse Width	400			400			400			ps
V_{PP}	Input Swing (Note 2)	150		1000	150		1000	150		1000	mV
$\mathrm{t}_{\text {JITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t_{r} t_{f}	Output Rise/Fall Times Q (20\%-80\%)	100	225	350	100	225	350	100	225	350	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. 10 Series: V_{EE} can vary $+0.25 \mathrm{~V} /-0.5 \mathrm{~V}$ for $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. or V_{EE} can vary $+0.06 \mathrm{~V} /-0.5 \mathrm{~V}$ for $-40^{\circ} \mathrm{C}$ 100 Series: $V_{E E}$ can vary $+0.8 \mathrm{~V} /-0.5 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{PP}(\mathrm{min})}$ is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

MC10EL52, MC100EL52

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS $^{\text {M }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family $^{\text {AN1568/D }}-$ Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC10EL52, MC100EL52

PACKAGE DIMENSIONS

SOIC-8 NB
D SUFFIX CASE 751-07
ISSUE AK

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
H	0.10	0.25	0.004	0.010		
\mathbf{J}	0.19	0.25	0.007	0.010		
\mathbf{K}	0.40	1.27	0.016	0.050		
\mathbf{M}	$0{ }^{\circ}$	$8{ }^{\circ}$	0	0		
\mathbf{N}	0.25	0.50	0.010	0.020		
\mathbf{S}	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8
DT SUFFIX
CASE 948R-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLE
OR GATE BURRS SHALL NOT EXCEED 0.15 OR GATE BURRS
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		66°	0°		6°

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

