FAIRCHILD

SEMICONDUCTOR

CD40193BC Synchronous 4-Bit Up/Down Binary Counter

General Description

The CD40193BC up/down counter is monolithic complementary MOS (CMOS) integrated circuits. The CD40193BC is a binary counter.

Counting up and counting down is performed by two count inputs, one being held HIGH while the other is clocked. The outputs change on the positive-going transition of this clock.

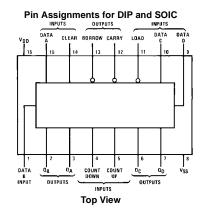
These counters feature preset inputs that are enabled when load is a logical "0" and a clear which forces all outputs to "0" when it is at logical "1". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

All inputs are protected against damage due to static discharge by clamps to V_{DD} and $V_{\text{SS}}.$

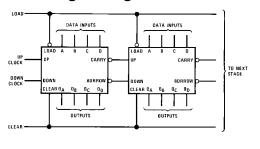
Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Carry and borrow outputs for easy expansion to N-bit by cascading

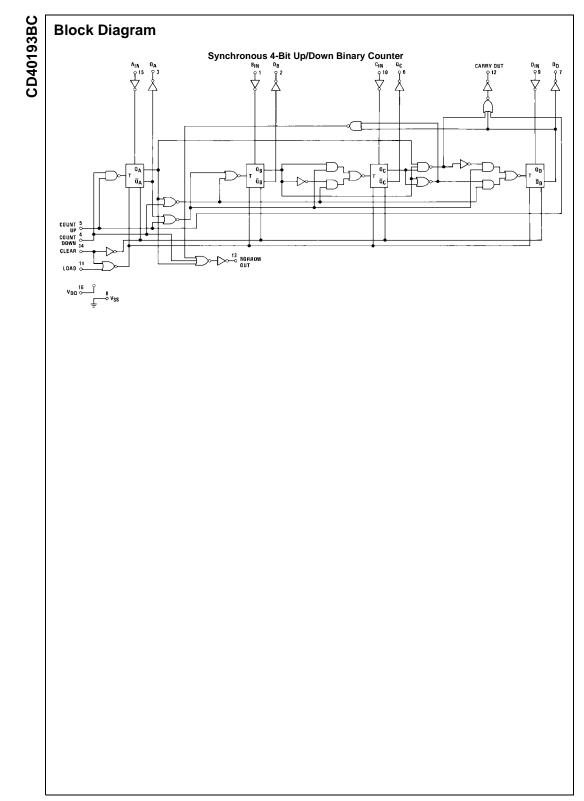
October 1987


Revised January 2004

Asynchronous clear


Ordering Code:

Order Number	Package Number	Package Description
CD40193BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD40193BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Connection Diagram

Cascading Packages

© 2004 Fairchild Semiconductor Corporation DS005988

Absolute Maximum Ratings(Note 1)

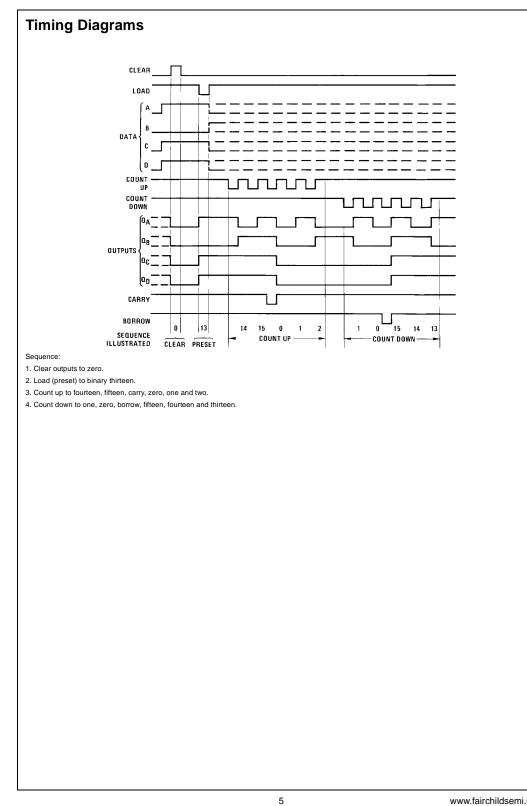
Recommended Operating Conditions (Note 2)

(Note 2)	-	Со
DC Supply Voltage (V _{DD})	-0.5 to +18 V_{DC}	DC
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}	Inp
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$	Ope
Power Dissipation (P _D)		
Dual-In-Line	700 mW	Note 1
Small Outline	500 mW	safety that th
Lead Temperature (T _L)		Opera
(Soldering, 10 seconds)	260°C	tions fo

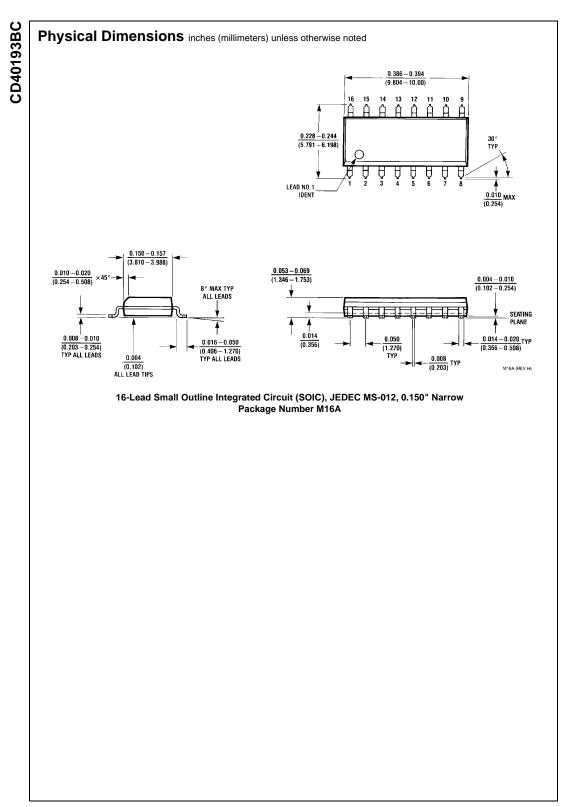
$\begin{array}{lll} \text{DC Supply Voltage (V_{\text{DD}})} & 3 \text{ to } 15 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V_{\text{IN}})} & 0 \text{ to } \text{ V}_{\text{DD}} \text{ V}_{\text{DC}} \\ \text{Operating Temperature Range (T_{\text{A}})} & -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \\ \end{array}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Recommended Operating Conditions" and Electrical Characteristics tables provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.


DC Electrical Characteristics	(Note 3)
-------------------------------	----------

Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units	
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units	
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD}or V_{SS}$		5			5		150		
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10			10		300	μΑ	
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		600		
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05			0.05		0.05		
	Output Voltage	$V_{DD} = 10V$		0.05			0.05		0.05	V	
		$V_{DD} = 15V$		0.05			0.05		0.05		
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95			4.95			
	Output Voltage	$V_{DD} = 10V$	9.95		9.95			9.95		V	
		$V_{DD} = 15V$	14.95		14.95			14.95			
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5		
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0			3.0		3.0	V	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0		
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5			
	Input Voltage	$V_{DD} = 10V, V_O = 1V \text{ or } 9V$	7.0		7.0			7.0		V	
		V_{DD} = 15V, V_O = 1.5V or 13.5V	11.0		11.0			11.0			
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36			
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		v v	
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4			
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36			
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4			
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0		
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA	


Note 4: I_{OH} and I_{OL} are tested one output at a time.


CD40193BC

t _{PHL} or t _{PLH}	Propagation Delay Time from Count Up or		Min	Тур	Max	Un
f t _{PHL} or t _{PLH}	from Count Up or	$V_{DD} = 5V$		250	400	
t _{PHL} or t _{PLH}		$V_{DD} = 10V$		100	160	n
	Count Down to Q	$V_{DD} = 15V$		80	130	
f	Propagation Delay Time	$V_{DD} = 5V$		120	200	
	from Count Up to Carry	$V_{DD} = 10V$		50	80	r
		$V_{DD} = 15V$		40	65	
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		120	200	
f	from Count Down	$V_{DD} = 10V$		50	80	r
t	to Borrow	$V_{DD} = 15V$		40	65	
t _{SU}	Time Prior to Load	$V_{DD} = 5V$		100	160	
-	That Data Must	$V_{DD} = 10V$		30	50	r
	Be Present	$V_{DD} = 15V$		25	40	
t _{PHL} I	Propagation Delay Time	$V_{DD} = 5V$		130	220	
1	from Clear to Q	$V_{DD} = 10V$		60	100	r
		$V_{DD} = 15V$		50	80	
	Propagation Delay Time	$V_{DD} = 5V$		300	480	
f	from Load to Q	$V_{DD} = 10V$		120	190	r
		V _{DD} = 15V		95	150	
t _{TLH} or t _{THL}	Output Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	r
		V _{DD} = 15V		40	80	
f _{CL}	Maximum Count Frequency	$V_{DD} = 5V$	2.5	4		
		$V_{DD} = 10V$	6	10		М
1	Maximum Oaurt Diag	$V_{DD} = 15V$	7.5	12.5		
IOE IOE	Maximum Count Rise	$V_{DD} = 5V$	15			
· · · · · ·	or Fall Time	$V_{DD} = 10V$	5			Ļ
t t	Minimum Count Pulse	$V_{DD} = 15V$ $V_{DD} = 5V$		120	200	
WITH WE	Width	$V_{DD} = 3V$ $V_{DD} = 10V$		35	80	r
	WIGHT	$V_{DD} = 10V$ $V_{DD} = 15V$		28	65	
t _{WH}	Minimum Clear	$V_{DD} = 5V$		300	480	
****	Pulse Width	$V_{DD} = 10V$		120	190	r
		$V_{DD} = 15V$		95	150	
t _{WL}	Minimum Load	$V_{DD} = 5V$		100	160	
	Pulse Width	$V_{DD} = 10V$		40	65	r
		V _{DD} = 15V		32	55	
C _{IN}	Average Input Capacitance	Load and Data		5	7.5	
		Inputs (A,B,C,D)				
		Count Up, Count		10	15	p
		Down and Clear				
C _{PD} I	Power Dissipation Capacity	(Note 5)		100		F

CD40193BC

CD40193BC Synchronous 4-Bit Up/Down Binary Counter